Daniel M. Suter

Daniel M.  Suter Profile Picture

Professor
University of Zurich

Contact Info:

dsuter@purdue.edu
765-496-1562
LILY 2-239
suterlab.bio.purdue.edu

Training Group(s):
Integrative Neuroscience
Membrane Biology

Active Mentor - currently hosting PULSe students for laboratory rotations and recruiting PULSe students into the laboratory; serves on preliminary exam committees

Current Research Interests:

Our laboratory focuses on the mechanisms of neuronal growth cone motility and guidance during development and regeneration. We use two model systems, Aplysia and zebrafish. Using the large Aplysia neurons in culture, we investigate how the growth cone integrates its sensor, signaling, and motility functions to achieve directional movements towards target cells and establish functional connections. Specifically, we would like to understand how extracellular signals, such as from cell adhesion molecules, are transduced inside the cell to affect the underlying cytoskeleton. Our current studies aim at the understanding of reactive oxygen species (ROS) signaling and mechanosensing. In the ROS project, we also take advantage of zebrafish embryos to image and manipulate early nervous system development in vivo. We use a combination of quantitative live cell imaging, cell biological, biophysical, molecular and biochemical techniques to investigate the dynamics and function of adhesion, signaling, and cytoskeletal proteins, and to quantify forces involved in cell migration. We hope that our research will not only improve our understanding of the basic cell biology of neuronal growth cones, but also assist in the development of treatments that support axonal regeneration in nervous system diseases and injuries. Specifically, we are conducting a drug screen with zebrafish larvae to identify compounds that promote regeneration following spinal cord injury.

Selected Publications:

Terzi, A., H. Roeder, C. J. Weaver, and D. M. Suter. 2020. Neuronal NADPH oxidase 2 regulates growth cone guidance downstream of slit2/robo2. Dev Neurobiol. doi: 10.1002/dneu.22791

Terzi, A. and D. M. Suter. 2020. The role of NADPH oxidases in neuronal development. Free Rad. Biol. Med. 154:33-47. https://doi.org/10.1016/j.freeradbiomed.2020.04.027

McElmurry, K., J. E. Stone, D. Ma, P. Lamoureux, Y. Zhang, M. Steidemann, L. Fix, F. Huang, K. E. Miller, and Suter, D. M. 2020. Dynein-mediated microtubule translocation powering neurite outgrowth in chick and Aplysia neurons requires microtubule assembly. J. Cell Sci. 133(8):jcs232983. doi: 10.1242. PMC7188442.

Ren, Y., Y. He, S. Brown, E. Zbornik, M. J. Mlodzianoski, D. Ma, F. Huang, S. Mattoo, and D. M. Suter. 2019. A single tyrosine phosphorylation site in cortactin is important for filopodia formation in neuronal growth cones. Mol. Biol. Cell. 30(15):1817-1833. doi: 10.1091/mbc.E18-04-0202

Miller, K. E. and D. M. Suter. 2018. An integrated cytoskeletal model of neurite outgrowth. Front. Cell. Neurosci. 12:447. doi: 10.3389/fncel.2018.00447

Efremov, Y. M., A. X. Cartagena-Rivera, A. I. M. Athamneh, D. M. Suter, and A. Raman. 2018. Mapping heterogeneity of cellular mechanics by multi-harmonic atomic force microscopy. Nature Protocols.13(10):2200-2216. doi: 10.1038/s41596-018-0031-8.

Fligor, C. M., K. B. Langer, A. Sridhar, Y. Ren, P. K. Shields, M. C. Edler, S. K. Ohlemacher, V. M. Sluch, D. J. Zack, C. Zhang, D. M. Suter, and J. S. Meyer. 2018. Three-dimensional retinal organoids facilitate the investigation of retinal ganglion cell development, organization and neurite outgrowth from human pluripotent stem cells. Sci. Rep. 8(1):14520. doi: 10.1038/s41598-018-32871-8.

Weaver, C. J., A. Terzi, H. Roeder, T. Gurol, Q. Deng, Y. F. Leung, and D. M. Suter. 2018. nox2/cybb deficiency affects zebrafish retinotectal connectivity. J. Neurosci. 38 (26):5854-5871. https://doi.org/10.1523/JNEUROSCI.1483-16.2018

Ren, Y., M. J. Mlodzianoski, A. C. Lee, F. Huang, and D. M. Suter. 2018. A low-cost microwell device for high-resolution imaging of neurite outgrowth in 3D. J. Neural. Eng. 15:035001 http://iopscience.iop.org/article/10.1088/1741-2552/aaaa32/meta

Athamneh, A. I. M., Y. He, P. Lamoureux, L. Fix, D. M. Suter, and K. E. Miller. 2017. Neurite elongation is highly correlated with bulk forward translocation of microtubules. Sci. Rep. 2017 Aug 4;7(1):7292. doi: 10.1038/s41598-017-07402-6.

Liu, S., M. J. Mlodzianoski, Z. Hu., Y. Ren, K. McElmurry, D. M. Suter, and F. Huang. 2017. sCMOS noise-correction algorithm for microscopy images. Nat. Methods. 14(8):760-761. doi: 10.1038/nmeth.4379

Weaver, C. J., Y. F. Leung, and D. M. Suter. 2016. Expression dynamics of NADPH oxidases during early zebrafish development. J. Comp. Neurol. 524(10):2130-41.

Ren, Y., and D. M. Suter. 2016. Increase in growth cone size correlates with decrease in neurite growth rate. Neural Plast. http://dx.doi.org/10.1155/2016/3497901 Miller, K. E., and D. M. Suter. 2016. Editorial: Neuronal Mechanics and Transport. Front. Cell. Neurosci. 10:1. doi: 10.3389/fncel.2016.00001.

He, Y., Y. Ren, B. Wu, B. Decourt, A.C. Lee, A. Taylor, and D. M. Suter. 2015. Src and cortactin promote lamellipodia protrusion and filopodia formation and stability in growth cones. Mol. Biol. Cell. 26(18):3229-44.

Athamneh, A. I. M., A. X. Cartagena-Rivera, A. Raman, and D. M. Suter. 2015. Substrate deformation predicts neuronal growth cone advance. Biophys. J. 109(7):1358-71.

Athamneh, A. I. M., and D. M. Suter. 2015. Quantifying mechanical force in axonal growth and guidance. Front. Cell. Neurosci., 9:359. doi: 10.3389/fncel.2015.00359

Munnamalai, V., C. J. Weaver, C. E. Weisheit, P. Venkatraman, Z. S. Agim, M. T. Quinn, and D. M. Suter. 2014. Bidirectional interactions between NOX2-type NADPH oxidase and the F-actin cytoskeleton in neuronal growth cones. J. Neurochem. 130(4):526-40.

  • Faculty Profile

Ernest C. Young Hall, Room 170 | 155  S. Grant Street, West Lafayette, IN 47907-2114 | 765-494-2600

© Purdue University | An equal access/equal opportunity university | Copyright Complaints | Maintained by The Purdue University Graduate School

If you have trouble accessing this page because of a disability, please contact The Purdue University Graduate School.