Andy Hudmon

Andy Hudmon Profile Picture

Associate Professor of Medicinal Chemistry and Molecular Pharmacology

Contact Info:

Phone: 765-496-6389
Fax: 765-494-1414

Training Group(s):
Integrative Neuroscience

Active Mentor - currently hosting PULSe students for laboratory rotations and recruiting PULSe students into the laboratory; serves on preliminary exam committees

Current Research Interests:

The long-term goal of the Hudmon laboratory is to elucidate how protein kinases and other effectors function as specialized molecular machines and assemble with their substrates and regulators to form signaling modules in excitable cells like neurons and myocytes. The clinical relevance of these studies hinge upon the role that these signaling complexes play in aberrant calcium signaling; processes that contribute to neurodegeneration following excitotoxicity stimuli like brain trauma and hyperexcitability with chronic pain and lethal arrhythmias in the failing heart. My laboratory focuses on kinases, key signaling molecules downstream of multiple second messengers which represent a significant portion of the druggable effectors being targeted for therapeutic utility. Current research focuses on the Ca2+/calmodulin activated protein kinase (CaMKII); a serine/threonine kinase regulating diverse substrates in response to calcium signaling. While CaMKII is well known for its role as a key mediator of synaptic plasticity and learning/memory, its activity has also been implicated in most organ systems of the body where its substrates are linked to diverse processes. Current research is aimed at understanding how CaMKII contributes to arrhythmogenesis in heart failure through its regulation of voltage-gated sodium and potassium channels as well as understanding how CaMKII signaling contributes to neuronal degeneration and dysfunction during excitotoxicity. Current studies are underway to develop small molecule and highly specific peptides to therapeutically modulate CaMKII in these disease states.

Selected Publications:

Ashpole NM, Hudmon A. Excitotoxic neuroprotection and vulnerability with CaMKII inhibition. Molecular and Cellular Neuroscience 2011;46(4):720–730. PMID: 21685929

Ashpole NM, Song W, Brustovetsky T, Engleman EA, Brustovetsky N, Cummins TR, Hudmon A. Calcium/calmodulin-dependent protein kinase II (CaMKII) inhibition induces neurotoxicity via dysregulation of glutamate/calcium signaling and hyperexcitability. Journal of Biological Chemistry 2012; 287(11):8495–8506. PMID: 22253441

Ashpole NM, Herren AW, Ginsburg KS, Johnson DA, Brogan JD, Cummins TR, Bers DM, Hudmon A. CaMKII regulates cardiac sodium channel Nav1.5 by phosphorylation in the loop between domain I and II. J Biol Chem 2012; 287(24):19856–19869.

Tang Q, Bangaru MLY, Wu Hsiang-En, Koopmeiners AS, Kostic S, Pan B, Yu H, Fischer GJ, McCallum JB, Kwok WM, Hudmon A, Hogan QH. Ca2+-dependent regulation of Ca2+ currents in rat primary afferent neurons: Role of CaMKII and the effect of injury. J Neuroscience 2012; 32(34):11737–11749. PMID:22915116

Song W, Yucheng X, Hanying C, Ashpole NM, Piekarz A, Ma P, Hudmon A, Cummins TR, Shou W. Human Nav1.5 F1486 deletion associated with long QT syndrome leads to impaired sodium channel inactivation and reduces lidocaine sensitivity. J Physiol 2012; 590(Pt 20):5123–5139. PMID:22826127.

Ashpole NM, Chawla AR, Martin MP, Brustovetsky T, Brustovetsky N, Hudmon A. Loss of calcium/calmodulin-dependent protein kinase II activity in cortical astrocytes decreases glutamate uptake and induces neurotoxic release of ATP. Journal of Biological Chemistry 2013; May 17;288(20):14599–611. PMID: 23543737

Yu H, Pan B, Weyer A, Wu HE, Meng J, Fischer G, Vilceanu D, Light AR, Stucky C, Rice FL, Hudmon A, Hogan Q. CaMKII controls whether touch is painful. J Neurosci. 2015 Oct 21;35(42):14086–102. PMID: 26490852

Zhou C, Ramaswamy SS, Johnson DE, Vitturi DA, Schopfer FJ, Freeman BA, Hudmon A, Levitan ES. Novel roles for peroxynitrite in angiotensin II and CaMKII signaling. Sci Rep. 2016;6:23416. PMID: 27079272

Pei Z, Xiao Y, Meng J, Hudmon A, Cummins TR. Cardiac sodium channel palmitoylation regulates channel availability and myocyte excitability with implications for arrhythmia generation. Nat. Commun. 2016;7:12035. PMID: 27337590

Chawla AR, Johnson DE, Zybura AS, Leeds BP, Nelson RM, Hudmon A. Constitutive regulation of the glutamate/aspartate transporter EAAT1 by calcium/calmodulin-dependent protein kinase II. J Neurochemistry. 2017;140(3):421–434. PMID: 27889915

Johnson DE, Hudmon A. Activation State-Dependent Substrate Gating in Ca2+/calmodulin-Dependent Protein Kinase II. Neural Plast. 2017;2017:9601046. doi: 10.1155/2017/9601046. Epub 2017 Dec 17. PMID: 29391954

Shugg T, Johnson DE, Shao M, Lai X, Witzmann F, Cummins TR, Rubart-Von-der Lohe M, Hudmon A, Overholser BR. Calcium/calmodulin-dependent protein kinase II regulation of IKs during sustained β-adrenergic receptor stimulation. Heart Rhythm. 2018 Feb 2. pii: S1547-5271(18)30040-7. doi: 10.1016/j.hrthm.2018.01.024. [Epub ahead of print] PMID: 29410121

  • Faculty Profile

Ernest C. Young Hall, Room 170 | 155  S. Grant Street, West Lafayette, IN 47907-2114 | 765-494-2600

© Purdue University | An equal access/equal opportunity university | Copyright Complaints | Maintained by The Purdue University Graduate School

If you have trouble accessing this page because of a disability, please contact The Purdue University Graduate School.