NAME (Last, First): \qquad
Please indicate your group number \qquad (If applicable)

Instructor's Name and Section:

\qquad
Circle One: MWF 8:30-9:20 AM V Zeinoddini Meimand MWF 9:30-10:20 AM J Jones MWF 11:30-12:20 PM D Hoyniak MWF 12:30-1:20 PM I Bilionis

MWF 2:30-3:20 PM J Ackerman MWF 4:30-5:30 PM A Buganza Tepole TTH 9:00-10:15 AM M Murphy J Jones Distance Learning

Please review the following statement:

I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Signature:

\qquad

INSTRUCTIONS

Begin each problem in the space provided on the examination sheets. If additional space is required, use the white lined paper provided to you.

Work on one side of each sheet only, with only one problem on a sheet.
Each problem is worth 20 points.
Please remember that for you to obtain maximum credit for a problem, it must be clearly presented, i.e.

- The only authorized exam calculator is the TI-30IIS
- The allowable exam time for Exam 1 is 70 minutes.
- The coordinate system must be clearly identified.
- Where appropriate, free body diagrams must be drawn. These should be drawn separately from the given figures.
- Units must be clearly stated as part of the answer.
- You must carefully delineate vector and scalar quantities.

If the solution does not follow a logical thought process, it will be assumed in error.
When handing in the test, please make sure that all sheets are in the correct sequential order and make sure that your name is at the top of every page that you wish to have graded.

Problem 1 \qquad

Problem 2 \qquad

Problem 3 \qquad

Total \qquad
\qquad

PROBLEM 1 (20 points)

1A. Blocks A, B and C weigh $50 \mathrm{~N}, 25 \mathrm{~N}$ and 15 N respectively. Assuming $\mu_{A B}=$ $0.3, \mu_{B C}=0.4$, and $\mu_{C D}=0.3$, determine the smallest horizontal force P that will cause impending motion. Circle the impending motion that will occur.

$\mathrm{P}=$ \qquad
Impending Motion $=($ Block B moves, Block C moves, Block B and C move together)

1B. Circle the correct equilibrium equation below for the wedge shown below. (3 pts)
a) $\quad \sum F_{x}=0=\mathrm{P}-f_{1}+f_{2} \cos \theta-N_{2} \sin \theta$
b) $\quad \sum F_{x}=0=\mathrm{P}-f_{1}-f_{2} \sin \theta-N_{2} \sin \theta$
c) $\quad \sum F_{x}=0=\mathrm{P}-f_{1}-f_{2} \cos \theta+N_{2} \cos \theta$
d) $\quad \sum F_{x}=0=\mathrm{P}-f_{1}-f_{2} \cos \theta-N_{2} \sin \theta$
e) None of the Above

If you solved for P in this problem and found P to be greater than zero, circle the correct statement about the wedge.(2 pts)
a) The wedge is self-locking.
b) The wedge is not self-locking.
C) It cannot be determined from this information.

\qquad
1C. Determine the angle of wrap (β) and largest weight $\left(W_{B}\right)$ that can be held in static equilibrium using the cable system shown with a tension $\mathrm{T}=1000 \mathrm{~N}$. Assume the static coefficient of friction between A the cable and fixed drum C is $\mu_{\mathrm{s}}=0.3$.

$\left(W_{B}\right)_{\max }=$

1D. A Determine the magnitude of the hydrostatic force ($\mathrm{F}_{\text {eq }}$) acting on the concrete dam. Assume $\rho g=62.5 \mathrm{lb} / \mathrm{tt}^{3}$ and the dam is 4 ft wide. What is the minimum weight of the concrete dam (W D) needed to prevent the dam from tipping assuming the center of mass is as shown.

\qquad

PROBLEM 2. (20 points)

GIVEN: The truss is loaded with a 4 kN load at point E with the geometry shown in the figure below.

2A. Determine all of the zero-force members and list here: \qquad (3 points)

2B. Draw an appropriate free-body diagram in the box below and determine the force in member EF and circle whether it is in tension, compression or zero. (5 points)

Free-body diagram (2 points)

\qquad Tension, Compression, Zero (Circle One) (3 points)
\qquad
2C. Draw an appropriate free-body diagram (in the box provided below) and determine the forces carried by members BC, HC and HG. Determine the magnitudes of BC, HC and HG and circle whether the members are in tension, compression or zero (list your answers in the box provided).

Force in member BC_	Tension, Compression, Zero	(Circle One)	$(3 \mathrm{pts})$
Force in member HC	Tension, Compression, Zero	(Circle One)	$(3 \mathrm{pts})$
Force in member HG	Tension, Compression, Zero	(Circle One)	$(3 \mathrm{pts})$

\qquad

PROBLEM 3. (20 points)

GIVEN: The human arm can be modeled as a simple frame as shown below with BD representing the bicep muscle and ADE and ABC representing the upper arm and forearm, respectively. The arm is supporting a 1 kg mass in the posture shown. The biceps muscle (BD) can be represented as a 2force member, and the member $A D E$ is assumed to be held in place by a fixed point E. The weight of the forearm $A B C$ is 10 N ; the weights of the members AE and BD can be neglected.

FIND:
3A. Identify all 2-force members in the frame and list them here. \qquad (1 pt)

3B. Draw the free body diagrams of the three members of the system (ADE, $B D, A B C)(6 \mathrm{pts})$

C
\qquad
3C. Calculate the tension in the biceps muscle (member BD) and the force acting on $B D$ at joint B. (4 pts):
$\overline{\boldsymbol{F}_{B D}}=(\ldots \overline{\boldsymbol{i}}+\ldots \overline{\boldsymbol{J}}), \overline{\left|\boldsymbol{F}_{B D}\right|}=$
3D.Calculate the force at the elbow joint A on member $A B C$, (F_{A}) on $A B C$. Calculate the force at the elbow joint A on member ADE, (F_{A})on ADE. (7 pts)

$\left(\overline{\boldsymbol{F}}_{\boldsymbol{A}) \text { on } \boldsymbol{A B C}}=(\ldots \quad \overline{\boldsymbol{\imath}}+\ldots \quad \overline{\boldsymbol{J}})\right.$	$(4 \mathrm{pts})$
$\left(\overline{\boldsymbol{F}}_{A) \text { on } \boldsymbol{A D E}}=(\ldots \quad \overline{\boldsymbol{\imath}}+\ldots \quad \overline{\boldsymbol{J}})\right.$	$(3 \mathrm{pts})$

\qquad
3E. If the maximum force that the biceps can generate is 470 N , what is the maximum mass that can be supported on the hand in the posture shown in the diagram? (2 pts):
\qquad

ME 270 Exam 2 Equations

Buoyancy

$$
\mathrm{F}_{\mathrm{B}}=\rho \mathrm{gV}
$$

Fluid Statics

$\mathrm{P}=\rho \mathrm{gh}$
$\mathrm{F}_{\mathrm{eq}}=\mathrm{P}_{\mathrm{avg}}(\mathrm{Lw})$

Belt Friction

$\frac{T_{L}}{T_{S}}=e^{\mu \beta}$
\qquad

1A. $P=42 N$ (Since $P_{B C}<P_{B}$)
Impending Motion $=$ Block B and C move together

1 B d) $\sum F_{x}=0=\mathrm{P}-f_{1}-f_{2} \cos \theta-N_{2} \sin \theta$
c) It cannot be determined from this information

1C $\quad \beta=140^{\circ}=\frac{7}{9} \pi=0.778 \pi=2.44 \mathrm{rad} . \quad\left(W_{B}\right)_{\max }=2081 \mathrm{~N}$

1D. $F_{e q}=4500 \mathrm{lbs} \quad W_{D}=3600 \mathrm{lbs}$

2A. IH, DF, CF

2B. 7.21 kN Compression

2C. Force in member BC 9 kN Tension
Force in member HC -5 kN Compression
Force in member HG -6 kN Compression

3A. Free body diagram

3B. $\quad \bar{F}_{B D}=(-17.43 N \overline{\boldsymbol{\imath}}+87.16 N \bar{J}), \overline{\left|F_{B D}\right|}=88.88 N$

3C. $\overline{\boldsymbol{F}}_{\text {Aon } A B C}=(17.43 \bar{\imath}+-67.34 \bar{\jmath}) \mathrm{N} \quad \overline{\boldsymbol{F}}_{\text {Aon } A B C}=(-17.43 \bar{\imath}+67.34 \bar{\jmath}) \mathrm{N}$

3D. $m=7.17 \mathrm{~kg}$

