FRAMES AND MACHINES

Learning Objectives

1). To evaluate the unknown reactions at the supports and the interaction forces at the connection points of a rigid frame in equilibrium by solving the equations of static equilibrium of the overall structure and each individual member.
2). To do an engineering estimate of these quantities.

Definitions

Two-Force Member: a structural member that is loaded only at two pin joints along the member.
Multi-Force Member: a structural member that is loaded at more than two points along the member.
Truss: a rigid framework of straight, lightweight two-force members that are joined together at their ends.
Frame: an assembly of rigid members (of which at least one is a Inulti- force membep) intended to be a stationary
structure for supporting a load.
Machine: an assembly of rigid members designed to do mechanical work by transmitting a given set of input loading forces into another set of output forces.

Newton's Third Law

Newton's Third Law: For each action there is an action and opposite reaction $\left(\mathrm{F}_{\mathrm{A}_{\text {Body } 1}}=-\mathrm{F}_{\mathrm{A}_{\text {Body } 2}}\right)$

Frames

In frames, we are often interested not only in the reaction forces at the supports but also in the interaction forces between members and the loads carried by any two-force members.

Procedure:

1). Inspect structure for two-force members.
2). Draw FBDs of the entire structure and of each member. Be sure the interaction forces between members are equal in magnitude, opposite in direction and collinear (i.e., satisfy Newton's Third Law).
3). Count the number of unknowns and equations available for each FBD. Successively write and solve the equilibrium equating corresponding to the FBDs of interest.

Note:

1). For a structure composed of " N " members, will be " $\mathrm{N}+1$ " sets of equilibrium equations and FBDs. Only " N " sets of equations are independent.
2). If all external reactions on a frame can be determined, then the internal forces between members may be determined from either member.
3). If there are more unknowns than available equations \Rightarrow Statistically Indeterminate. This is not always true. Sometimes by disassembling the frame, the forces can be determined using the equilibrium equations.

FGURE 17

FIGURE 18

FIGURE 19

Frames and Machines

Example 3

Given: Frame ABCDEF is loaded as shown and is in static equilibrium.
Find: \quad Five alternative free body diagrams for member CE are shown. Explain what (if anything) is erroneous in each diagram.

Frames and Machines
 Example 4

Given: The frame shown is loaded with a 100kg package and is supported by pin supports at joints A and B. The frame is in static equilibrium.

Find:
a) Identify any two-force members in the frame.
b) Draw the overall free body diagram and the individual free body diagrams of members ACE and BCD, and pulley E.
c) Determine the forces at pin C on member BCD.

b)

$$
\begin{aligned}
& \Sigma M_{A}=0: \quad B_{y}(0.6)-100(9.81)(0.975)=0 \\
& \Rightarrow B_{y}=1.59 \mathrm{kN}
\end{aligned}
$$

$\sum r_{x}=0: \quad A_{x}+B_{x}=0: \quad \Rightarrow A_{x}=-B_{x}$
$\Sigma F_{y}=0: \quad A_{y}+B_{y}-100(9.81)=0$

$$
\Rightarrow A y=-0.613 \mathrm{kN}
$$

C) From FBD \#3:

$$
\begin{aligned}
& \sum M_{B}=0: \quad-C_{x}(0.045)-T(0.75)=0 \\
& \Rightarrow C_{x}=-1.64 \mathrm{kN} \\
& \sum F_{y}=0: C_{y}+B_{y}=0 \Rightarrow C_{y}=-1.59 \mathrm{kN} \\
& (\bar{C})_{\text {on } B(1)}=-1.64 \bar{i}-1.59 \overline{\mathrm{j}} \mathrm{kN} \\
& (\bar{C})_{\text {on } A C E}=1.64 \bar{i}+1.59 \overline{\mathrm{j}} \mathrm{kN}
\end{aligned}
$$

Frames and Machines
Example 5
Given: A toggle clamp is subjected to a force " F " at the handle.
Find:
a) Determine the loads at joint C and pin B on member $B C$. Express these loads in vector form.
b) Determine the vertical clamping force acting at E as a function of the applied force " F ".
c) If the applied force is doubled, what happens to the clamping force?

From FBD \# 1

$$
\begin{aligned}
& \sum M_{B}=0: \\
& -F_{C D} \cos 30^{\circ}\left(\frac{a}{2}\right)+F_{C D} \sin 30^{\circ}\left(\frac{a}{2}\right) \\
& -F^{2}(2 a)=0 \\
& \Rightarrow F_{C D}=-10.93 \mathrm{~F}, \quad \text { (compression) }
\end{aligned}
$$

FBD \# 1
$\sum F_{y}=0$,
$-F \cos \cos 30^{\circ}-F+B_{y}=0$

$$
\Rightarrow \quad B_{y}=-8.464 \quad F
$$

$$
\begin{aligned}
\sum F_{x} & =0: \\
& B_{x}+F_{C D} \sin 30^{\circ}=0 \\
& \Rightarrow B_{x}=5.464 F
\end{aligned}
$$

From FBD \# 2.

$$
\begin{array}{cl}
\sum M_{A}=0: B_{x}(a)-F_{E}(1.5 a)=0 & F B D \not \equiv 2 \\
\Rightarrow & F_{E}=3.64 F
\end{array}
$$

Frames and Machines

Group Quiz 2

Group \#: \qquad Group Members: 1) \qquad
(Present Only)
Date: \qquad Period: \qquad 2) \qquad
3) \qquad
4) \qquad
Given: A frame is composed of lightweight rigid members $A B C D, B E$, and CEG. The frame is supported by a pin reaction at A and a roller at D. The frame is loaded with a suspended weight of $W=40 \mathrm{lb}$.

Find:

a) Draw a free body diagram of the overall frame and of individual members ABCD, CEG and pulley G.
b) Determine the reaction at the pin support at A and the roller at D .
c) Determine the forces acting on member CEG.

Represent each of the forces in vector form.

Solution:

Name/Group 羙: \qquad Group Members: 1) \qquad 2) \qquad
Date: \qquad Period: \qquad 3) \qquad 4) \qquad

Given: A frame is composed of lightweight rigid members $\mathrm{ABCD}, \mathrm{BE}$ and CEG. The frame is supported by a pin reaction at A and a roller at D. The frame is loaded with a suspended weight of W $=40 \mathrm{lb}$.

Find:
(a) Draw a free body diagram of the overall frame and of individual members $\mathrm{ABCD}, \mathrm{CEG}$ and pulley G .
(b) Determine the reactions at the pin support at A and the roller at D .
(c) Determine the forces acting on member CEG. Represent each of the forces in vector form.
 (a) Note member "Be" is a Two-Force Member

Solution:

From FBD (1)
(b)

$$
\begin{aligned}
& \sum M_{A}=0=-40(19)+\left(D_{x}\right)(18) \Rightarrow D_{x}=42.21 \mathrm{~B} \\
& \sum F_{x}=0=-D_{x}+A_{x} \Rightarrow A_{x}=D_{x}=42.21 \mathrm{~B} \\
& \sum F_{y}=0=A y-40 \Rightarrow A_{y}=401 \mathrm{~B}
\end{aligned}
$$

(c) From $F B D(4)$

$$
\begin{aligned}
& \sum F_{x}=-G_{x}-40 \Rightarrow G_{x}=-401 \mathrm{l} \\
& \sum F_{y}=-G_{y}-40 \Rightarrow G_{y}=-401 \mathrm{l}
\end{aligned}
$$

\therefore On MEMBER CEG $G=-40 \bar{i}-40 \bar{j} 16$

$$
\begin{aligned}
& \text { FROM FBD (3) } \\
& Z M_{C}=-\frac{6}{10} F_{B E}(8)+G_{y}(16) \Rightarrow \left\lvert\, \begin{array}{c}
F_{E E}=-13316 \\
\\
=13316(8)
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \therefore C_{x}=+\frac{8}{10}(-133)+40=-66.416 \\
& \Sigma F_{y}=0=C_{y}-\frac{6}{10}\left(F_{B E}\right)+G y \\
& \therefore C y=+\frac{6}{10}(-133)+40=-39.816 \\
& \therefore \bar{C}=-66.4 \bar{\tau}-39.8 \overline{5} 16 \text { on member } C E G
\end{aligned}
$$

