"CENTROID" AND "CENTER OF MASS" BY INTEGRATION

Learning Objectives

1). To determine the volume, mass, centroid and center of mass using integral calculus.
2). To do an engineering estimate of the volume, mass, centroid and center of mass of a body.

Definitions

Centroid: Geometric center of a line, area or volume.

Center of Mass: Gravitational center of a line, area or volume.

The centroid and center of mass coincide when the density is uniform throughout the part.

Centroid by Integration

a). Line:
$\mathrm{L}=\int \mathrm{dL}$
$L \bar{x}=\int x_{c} d L$
$L \bar{y}=\int y_{c} d L$
b). Area:
$A=\int d A \quad A \bar{x}=\int x_{c} d A \quad A \bar{y}=\int y_{c} d A$
c). Volume:
$V=\int d V$
$V \bar{x}=\int x_{c} d V$
$V \bar{y}=\int y_{c} d V$
$V \bar{z}=\int z_{c} d V$
where: $\mathrm{X}, \mathrm{y}, \mathrm{Z}$ represent the centroid of the line, area or volume.
$\left(\mathrm{x}_{\mathrm{c}}\right)_{\mathrm{i}},\left(\mathrm{y}_{\mathrm{c}}\right)_{\mathrm{i}},\left(\mathrm{z}_{\mathrm{c}}\right)_{\mathrm{i}}$ represent the centroid of the differential element under consideration.

Center of Mass by Integration

$$
\begin{aligned}
& \mathrm{m}=\int \mathrm{dm}=\int \rho \mathrm{dV} \\
& \mathrm{~m} \mathrm{x}_{\mathrm{G}}=\int \mathrm{x}_{\mathrm{c}} \mathrm{dm}=\int \mathrm{x}_{\mathrm{c}}(\rho \mathrm{dV}) \\
& \mathrm{m} \overline{\mathrm{y}}=\int \mathrm{y}_{\mathrm{c}} \mathrm{dm}=\int \mathrm{y}_{\mathrm{c}}(\rho \mathrm{dV}) \\
& \mathrm{m} \overline{\mathrm{z}}=\int \mathrm{z}_{\mathrm{c}} \mathrm{dm}=\int \mathrm{z}_{\mathrm{c}}(\rho \mathrm{dV})
\end{aligned}
$$

Note:

- For a homogeneous body $\rho=$ constant, thus

$$
\mathrm{m}=\int \rho \mathrm{d} \mathrm{~V}=\rho \int \mathrm{dV}=\rho \mathrm{V}
$$

- Tabulated values of the centroid and center of mass of several standard shapes can be found on the back inside cover of the textbook.

Arch Length

$$
\begin{aligned}
& d L=\left|1+\left(\frac{d x}{d y}\right)^{2}\right|^{1 / 2} d y \\
& x_{C}=x(y), y_{C}=y
\end{aligned}
$$

$$
\begin{aligned}
& d L=\left|\left(\frac{d R}{d \phi}\right)^{2}+R^{2}\right|^{1 / 2} d \phi \\
& x_{C}=R(\phi) \cos \phi \\
& y_{C}=R(\phi) \sin \phi
\end{aligned}
$$

$d \mathscr{U}=\pi[R(z)]^{2} d z$

$d \mathscr{A}=2 \pi R(z) d L$
$=2 \pi R(z)\left[1+\left(\frac{d R}{d z}\right)^{2}\right]^{1 / 2} d z$

Arc Length

$$
\begin{aligned}
& d L=\left|1+\left(\frac{d y}{d x}\right)^{2}\right|^{1 / 2} d x \\
& x_{C}=x, y_{C}=y(x)
\end{aligned}
$$

$$
\begin{aligned}
& d L=\left|1+\left(\frac{d x}{d y}\right)^{2}\right|^{1 / 2} d y \\
& x_{C}=x(y), y_{C}=y
\end{aligned}
$$

Planar Area

Body or Shell of Revolution

Centroids and Center of Mass By Integration Example 1

Given: It is desired to determine the area and centroids of the shaded shape.
Find: For the shaded shape provided,
a) Estimate the area and the x and y centroids.
b) Calculate the area of the shape.
c) Calculate the x and y centroids of the shape.

\square

Centroids and Center of Mass By Integration

Example 4

Given: The shaded area is bound by two curves.
Find:

$\underbrace{}_{---x}$

Centers of Mass \& Centroids: By Integration Group Quiz 1

Group \#: \qquad Group Members: 1) \qquad
(Present Only)
Date: \qquad Period: \qquad 2) \qquad
3) \qquad
4) \qquad
Given: A shaded area is bounded by two lines given by $x=y^{2} / a$ and $y=x^{2} / a$.
Find:
a) Do an engineering estimate of the shaded area and the centroid of the shaded area (\bar{x}, \bar{y}).
b) Determine the location of the centroid (\bar{x}, \bar{y}) by the method of integration.

Solution:

$$
\begin{aligned}
& d L=\left|1+\left(\frac{d y}{d x}\right)^{2}\right|^{1 / 2} d x \\
& x_{C}=x, y_{C}=y(x)
\end{aligned}
$$

$$
\begin{aligned}
& d L=\left|1+\left(\frac{d x}{d y}\right)^{2}\right|^{1 / 2} d y \\
& x_{C}=x(y), y_{C}=y
\end{aligned}
$$

$$
\begin{aligned}
& d L=\left|\left(\frac{d R}{d \phi}\right)^{2}+R^{2}\right|^{h} d \phi \\
& x_{C}=R(\phi) \cos \phi \\
& y_{C}=R(\phi) \sin \phi
\end{aligned}
$$

PIGURE 8

FIGURE 7

$d z^{\prime}=\pi|R(z)|^{2} d z$
FIGURE 9 웅

FIGURE 96

