ME 270 – S	pring 2016 Exam 1	NAME (Last, First):	
Group #			
	ew the following statemen	t:	
I certify that	I have not given unauthorize	ed aid nor have I received	aid in the completion of this exam.
Signature:			
INSTRUCT	IONS		
_	problem in the space provide te lined paper provided to yo		eets. If additional space is required,
Work on on	e side of each sheet only, wi	th only one problem on a	sheet.
Each proble	em is worth 20 points.		
i.e. The control of the solution when hand	only authorized exam calcular allowable exam time for Exam coordinate system must be core appropriate, free body diag the given figures. Is must be clearly stated as paramust carefully delineate vectors	ator is the TI-30IIS on 1 is 70 minutes. Ilearly identified. Igrams must be drawn. The art of the answer. It is and scalar quantities. It is a sure that all sheets are	e in the correct sequential order
Instructor's	s Name and Section:		
Sections:	J Jones 9:30-10:20AM J Jones Distance Learning	J Gibert 1:30-2:20PM	I Bilionis 3:30-4:20PM
			Problem 1
			Problem 2
			Problem 3

Total _____

PROBLEM 1 (20 points) - Prob. 1 questions are all or nothing.

1A. Determine the <u>force vector expression</u> for cable AB (i.e., $\overrightarrow{F_{AB}}$) assuming the tension in the cable is 700lbs. Determine the moment of $\overrightarrow{F_{AB}}$ about point C (i.e., the origin of the coordinate axes).

$$\vec{F}_{AB} =$$
 (2 pts)
 $\vec{M}_{C} =$ (3 pts)

1B. For the system shown, determine the <u>equivalent force-couple system</u> at the base at C. Express the resultants in <u>vector form</u>. (<u>Hint</u>: This is not a static equilibrium problem.)

$$\vec{F}_{\rm eq} =$$
 (2 pts)
$$\vec{M}_{\rm C,eq} =$$
 (3 pts)

ME 270 - Spring 2016 Exam 1

NAME (Last, First):

1C. The force on the rope attached at C is $\vec{F} = (30\vec{\imath} - 45\vec{\jmath} + 50\vec{k})$ lb.

- (i) Find the unit vector \vec{u}_{CB} that points from C to B.
- (ii) Find the magnitude F_{CB} of the projection of \vec{F} in the direction of the unit vector \vec{u}_{CB} .

$$\vec{u}_{CB} =$$
 (3 pts)
$$F_{CB} =$$
 (2 pts)

1D. For the shaded area shown determine:

- (i) the area A
- (ii) the x-centroid.

Note: Keep the answer in terms of constants b and h.

A =	(2 pts)
$\overline{\mathbf{x}} =$	(3 pts)

PROBLEM 2 (20 points)

GIVEN: A ring holds a crate of weight W equal to 400N. Additionally, the ring is held in place by cables AD, AC, and rigid rod AB, which acts along the x-axis as shown. Answer the following:

a) In the space below draw a FBD of the ring (4 pts).

b) Resolve the tension in ropes AB, AC and AD in Cartesian vector form.

$$\vec{T}_{AB} = |\vec{T}_{AB}|[\underline{\qquad} \hat{\imath} + \underline{\qquad} \hat{\jmath} + \underline{\qquad} \hat{k}]$$

$$\vec{T}_{AC} = |\vec{T}_{AC}|[\underline{\qquad} \hat{\imath} + \underline{\qquad} \hat{\jmath} + \underline{\qquad} \hat{k}]$$

$$\vec{T}_{AD} = |\vec{T}_{AD}|[\underline{\qquad} \hat{\imath} + \underline{\qquad} \hat{\jmath} + \underline{\qquad} \hat{k}]$$

$$(2 \text{ pts})$$

$$\vec{T}_{AD} = |\vec{T}_{AD}|[\underline{\qquad} \hat{\imath} + \underline{\qquad} \hat{\jmath} + \underline{\qquad} \hat{k}]$$

$$(2 \text{ pts})$$

$$\vec{T}_{AC} = |\vec{T}_{AC}|[\hat{i} + \hat{i} + \hat{k}] \tag{2 pts}$$

$$\vec{T}_{AD} = |\vec{T}_{AD}|[\underline{\hat{i}} + \underline{\hat{j}} + \underline{\hat{k}}]$$
 (2 pts)

c) Find the magnitude of the tensions in cable AB, AC, and AD.

$$\left| \overrightarrow{T}_{AB} \right| = \tag{2 pts}$$

$$\left| \vec{T}_{AC} \right| =$$
 (2 pts)

$$\left| \vec{T}_{AD} \right| =$$
 (2 pts)

d) Find the angle α between cables AB and AC (4 pts).

$$\alpha =$$
 (4 pts)

PROBLEM 3. (20 points)

GIVEN: Angled bar ABCD is loaded as shown and held in <u>static equilibrium</u> by a fixed support at A.

FIND:

a) Determine the equivalent force for the distributed load along the vertical bar (AB) and its location from support A. (5 pts)

$$F_{\text{eq}} =$$
 (3 pts)
$$d_{fromA} =$$
 (2 pts)

b) On the sketch provided, complete the free-body diagram of bar ABCD using the equivalent force computed above. (3 pts)

c) Determine the reactions at the fixed support A required to hold bar ABCD in static equilibrium. (10 pts)

$M_{\rm A} =$	(4 pts)
$A_x =$	(3 pts)
$A_y =$	(3 pts)

d) If the 90 ft-lb couple were shifted toward point B, what impact would this have on the reactions at A? (2 pts)

Reactions would = (increase, decrease, remain the same) (Circle One)

ME 270 Exam 1 Equations

Distributed Loads

$$F_{eq} = \int_0^L w(x) dx$$

$$\overline{x}F_{eq} = \int_0^L x \ w(x)dx$$

Centroids

$$\overline{x} = \frac{\int x_{\rm c} dA}{\int dA}$$

$$\overline{y} = \frac{\int y_{c} dA}{\int dA}$$

$$\overline{\mathbf{x}} = \frac{\sum_{i} \mathbf{x}_{ci} \mathbf{A}_{i}}{\sum_{i} \mathbf{A}_{i}}$$

$$\overline{y} = \frac{\displaystyle\sum_{i} y_{ci} A_{i}}{\displaystyle\sum_{\cdot} A_{i}}$$

In 3D,
$$\overline{\mathbf{x}} = \frac{\displaystyle\sum_{i} \mathbf{x}_{ci} \mathbf{V}_{i}}{\displaystyle\sum_{i} \mathbf{V}_{i}}$$

Centers of Mass

$$\tilde{x} = \frac{\int x_{cm} \rho dA}{\int \rho dA}$$

$$\tilde{y} = \frac{\int y_{cm} \rho dA}{\int \rho dA}$$

$$\tilde{x} = \frac{\displaystyle\sum_{i} x_{cmi} \rho_{i} A_{i}}{\displaystyle\sum_{i} \rho_{i} A_{i}}$$

$$\tilde{y} = \frac{\displaystyle\sum_{i} y_{cmi} \rho_{i} A_{i}}{\displaystyle\sum_{i} \rho_{i} A_{i}}$$

Final Answers

1A)
$$\bar{F}_{AB} = -301\bar{\imath} + \ 203\bar{\jmath} + 602\ \bar{k}\ lbs$$
 $\bar{M}_c = \ -3612\ \bar{\jmath} + 1218\ \bar{k}\ lbs - ft$

$$\overline{M}_c = -3612\,\overline{j} + 1218\,\overline{k}\,lbs - ft$$

1B)
$$\overline{F}eq = -200\overline{\iota} - 900\overline{\iota} \, lbs$$
 $\overline{M}_{C,eq} = 4900\overline{k} \, lbs - ft$

$$\overline{M}_{C.ea} = 4900\overline{k} \ lbs - ft$$

1C)
$$\bar{u}_{CB} = -0.67\bar{\iota} - 0.33\bar{\jmath} + 0.67\bar{k}$$
 Fcb = 28.15 lbs

$$F_{CB} = 28.15 lbs$$

1D) A = (2/3) hb
$$\bar{x} = (\frac{3}{5}) b$$

$$\bar{x} = \left(\frac{3}{5}\right)b$$

2A) FBD

2B)
$$\bar{T}_{AB} = T_{AB} \left(1\bar{\iota} \right)$$

2B)
$$\bar{T}_{AB} = T_{AB} (1\bar{\iota})$$
 $\bar{T}_{AC} = T_{AC} (0.67\bar{\iota} - 0.33\bar{\jmath} + 0.67\bar{k})$ $\bar{T}_{AD} = T_{AD} (-0.25\bar{\iota} + 0.43\bar{\jmath} + 0.87\bar{k})$

$$\bar{T}_{AD} = T_{AD} \left(-0.25\bar{\imath} + 0.43\bar{\jmath} + 0.87\bar{k} \right)$$

$$TAD = 231 N$$

2D) $\alpha = 48$ degrees

3A) Feq =
$$45 lbs$$

$$d_{fromA} = 2 ft$$

3C)
$$MA = 100 \text{ ft-lbs}$$

$$Ax = -5 lbs$$

$$Ax = -5 lbs$$
 $Ay = 50 lbs$

3D) Reaction would Remain the Same