\qquad
Please indicate your group number \qquad

Instructor's Name and Section:

Circle One: J Jones 9:30-10:20AM I Bilionis 1:30-2:20 M Murphy 3:30-4:20PM
D Hoyniak 11:30-12:20 J Ackerman 2:30-3:20 A Buganza Tepole 4:30-5:20
V Zeinoddini Meimand 8:30-9:20 J Jones Distance Learning

Please review the following statement:
I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Signature:

\qquad

INSTRUCTIONS

Begin each problem in the space provided on the examination sheets. If additional space is required, use the white lined paper provided to you.

Work on one side of each sheet only, with only one problem on a sheet.
Each problem is worth 20 points.
Please remember that for you to obtain maximum credit for a problem, it must be clearly presented, i.e.

- The only authorized exam calculator is the TI-30IIS
- The allowable exam time for Exam 1 is 70 minutes.
- The coordinate system must be clearly identified.
- Where appropriate, free body diagrams must be drawn. These should be drawn separately from the given figures.
- Units must be clearly stated as part of the answer.
- You must carefully delineate vector and scalar quantities.

If the solution does not follow a logical thought process, it will be assumed in error.
When handing in the test, please make sure that all sheets are in the correct sequential order and make sure that your name is at the top of every page that you wish to have graded.

Problem 1 \qquad

Problem 2 \qquad

Problem 3 \qquad

Total \qquad
\qquad

PROBLEM 1 (20 points) - Prob. 1 questions are all or nothing.

1A. Draw a free body diagram of the free pulley (A) and determine the force F required to keep the system in equilibrium if the block (B) weighs 350 lbs . You may assume that $\theta=60^{\circ}$. (6 points)

Free Body Diagram (2 pts)

B

Force Required:	$(4 \mathrm{pts})$

1B. Cable BC exerts a force $\vec{F}=(-2.86 \hat{i}-8.57 \hat{j}+4.28 \hat{k}) k N$ on the bar $A B$ at B.
(i) Determine the unit vector $\vec{u}_{A B}$ that points from A towards B.
(ii) Find the magnitude $F_{A B}$ of the projection of \vec{F} in the direction of the unit vector $\vec{u}_{A B}$.

$\overline{\mathrm{u}}_{A B}=$	$(3 \mathrm{pts})$
$\mathcal{F}_{A B}=$	$(3 \mathrm{pts})$

ME 270 - Fall 2016 Exam 1

NAME (Last, First): \qquad
1C. Please indicate if the two loadings shown below are Equivalent Systems (Circle the correct response (2 points)

1D. Determine the Area (A) and the centroid location (\bar{x}, \bar{y}) for the shape below using the coordinate frame shown (6 points).

PROBLEM 2. (20 points)

$A=$	$(2 \mathrm{pts})$
$(\bar{x}, \bar{y})=$	$(4 \mathrm{pts})$

\qquad
GIVEN: A $150-\mathrm{lb}$ crate (E) is supported by cables $A B, A C$, and $A D$ as shown.

FIND: a) On the diagram below, show a complete free-body diagram of the cable system (2 pts):

b) Write the tension in cables $A B, A C$, and $A D$ in vector form (an unknown magnitude multiplied by a known unit vector) (3 pts):

$\overline{T_{A B}}=T_{A B}(\ldots \quad \overline{\boldsymbol{l}}+\ldots \quad \bar{J}+\ldots \quad \bar{k}) \mathrm{lbs}$.	(1 pt)
	(1 pt)
$\overline{T_{A D}}=T_{A D}\left(\underline{ }{ }^{\text {a }}+\ldots \quad \bar{J}+\ldots \quad \bar{k}\right) \mathrm{lbs}$	(1 pt)
Example: $\overline{W_{E}}=150(0 \bar{\imath}+0 \bar{j}+(-1) \bar{k})$ lbs.	

\qquad
c) Complete the equations of static equilibrium in the space provided below. (6 pts):

$$
\begin{align*}
& \Sigma F_{x}=0= \tag{2pts}\\
& \Sigma F_{y}=0= \tag{2pts}\\
& \Sigma F_{z}=0= \tag{2pts}
\end{align*}
$$

d) Solve the equations of static equilibrium for the magnitude of the tension in each cable. (6 pts):

$\boldsymbol{T}_{\boldsymbol{A B}}=$	$(2 \mathrm{pts})$
$\boldsymbol{T}_{\boldsymbol{A C}}=$	(2 pts)
$\boldsymbol{T}_{\boldsymbol{A D}}=$	(2 pts)

e) If the maximum tension that the cables can experience before failure is 500 lbs , determine the heaviest crate that can be supported by the cable system ($\mathrm{T}_{\mathrm{AB}}, \mathrm{T}_{\mathrm{AC}}, \mathrm{T}_{\mathrm{AD}}$) without failing. (3 pts)
\qquad

PROBLEM 3. (20 points)

GIVEN: A rigid-massless plate is loaded as shown in the figure provided.
The beam has a pin connection at Point A and rests on a roller on a 36.87° ramp at Point D.
At Point C, a $120 \mathrm{ft}-\mathrm{lb}$ couple \mathbf{M} is directed in the clockwise direction. $\mathbf{M}=-120 \hat{k} f t-l b$.
At Point B, a 30 lb load F is directed horizontally. $F=30 \hat{\imath} l b$
Along the top of the plate, a triangular distributed load is applied as shown.

a) Replace the distributed load by an equivalent load at the correct distance from F along the top of the plate and draw the complete free-body diagram on the figure provided below (8 points).

\qquad
b) Determine the reaction loads at A \& D, express them as vectors and determine their magnitude. Please show ALL of your work and write reactions as vectors. Please list your answers in the box provided.

$$
\begin{align*}
& \overline{\boldsymbol{F}_{\boldsymbol{A}}}=(\quad \overline{\boldsymbol{l}}+\ldots \quad \overline{\boldsymbol{J}})(\boldsymbol{l} \boldsymbol{b}) \quad\left\|\overline{\boldsymbol{F}_{\boldsymbol{A}}}\right\|=\underline{Z}(\boldsymbol{l} \boldsymbol{b}) \quad(5 \mathrm{pt}) \\
& \overline{\boldsymbol{F}_{\boldsymbol{D}}}=(\quad \overline{\boldsymbol{i}}+\ldots \quad \overline{\boldsymbol{J}})(\boldsymbol{l} \boldsymbol{b}) \quad\left\|\overline{\boldsymbol{F}_{\boldsymbol{D}}}\right\|=\ldots \tag{5pt}
\end{align*}
$$

c) If the 120 ft -lb couple is moved to Point B what will happen to the magnitude of the reaction force at Point D (circle one) (2 points)

1A. Free body diagram
NAME (Last, First): \qquad

1B. $\bar{u}_{A B}=0.635 \bar{\imath}+0.762 \bar{\jmath}+0.127 \bar{k} \quad \mathcal{F}_{A B}=+7.8 k N$
1C. Circle One: Yes they are equivalent
1D. $A=26.86$ in $^{2} \quad(\overline{\mathrm{x}}, \overline{\mathrm{y}})=(1.85,5.11)$ in

2A. Free body diagram
2B. $\overline{T_{A B}}=T_{A B}(-6 / 7 \bar{\imath}+3 / 7 \bar{\jmath}+2 / 7 \bar{k}) \mathrm{lbs}$.

$$
\begin{aligned}
& \overline{T_{A C}}=T_{A C}(-6 / 7 \bar{\imath}+-2 / 7 \bar{\jmath}+3 / 7 \bar{k}) \mathrm{lbs} \\
& \overline{T_{A D}}=T_{A D}(1 \bar{\imath}+0 \bar{\jmath}+0 \bar{k}) \mathrm{lbs}
\end{aligned}
$$

2C. $\Sigma F_{x}=0=-\frac{6}{7} T_{A B}-\frac{6}{7} T_{A C}+T_{A D}$
$\Sigma F_{y}=0=\frac{3}{7} T_{A B}-\frac{2}{7} T_{A C}$
$\Sigma F_{Z}=0=\frac{2}{7} T_{A B}+\frac{3}{7} T_{A C}-150$
2D) $\mathrm{T}_{\mathrm{AB}}=162 \mathrm{lbs} ., \mathrm{T}_{\mathrm{AC}}=242 \mathrm{lbs}, \mathrm{T}_{\mathrm{AD}}=346 \mathrm{lbs}$
2E) $\left(\mathrm{W}_{\mathrm{E}}\right)_{\text {max }}=217 \mathrm{lbs}$.
3A) $F_{\text {eq }}=120 \mathrm{lbs} ., x=2 \mathrm{ft}$.
3B) $\overline{F_{A}}=(0 i+80 j) l b s . \quad F_{A}=80 \mathrm{lbs}$.
$\overline{F_{B}}=(-30 i+40 j) l b s . \quad F_{B}=50 \mathrm{lbs}$
3C) $\overline{F_{D}}$ will not change.

ME 270 Exam 1 Equations
 ME 270 Exam 1 Equations

Distributed Loads

$F_{e q}=\int_{0}^{L} w(x) d x$
$\overline{\mathrm{x}} \mathrm{F}_{\mathrm{eq}}=\int_{0}^{\mathrm{L}} \mathrm{x} w(\mathrm{x}) \mathrm{dx}$

Centroids

$\bar{x}=\frac{\int x_{c} d A}{\int d A}$
$\overline{\mathrm{y}}=\frac{\int y_{\mathrm{c}} \mathrm{dA}}{\int \mathrm{dA}}$
$\overline{\mathrm{x}}=\frac{\sum_{\mathrm{i}} \mathrm{X}_{\mathrm{ci}} \mathrm{A}_{\mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{A}_{\mathrm{i}}}$
$\overline{\mathrm{y}}=\frac{\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{ci}} \mathrm{A}_{\mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{A}_{\mathrm{i}}}$
$\ln 3 \mathrm{D}, \overline{\mathrm{X}}=\frac{\sum_{\mathrm{i}} \mathrm{X}_{\mathrm{ci}} \mathrm{V}_{\mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}}$

Centers of Mass
$\tilde{x}=\frac{\int x_{c m} \rho d A}{\int \rho d A}$
$\tilde{\mathrm{y}}=\frac{\int \mathrm{y}_{\mathrm{cm}} \rho \mathrm{dA}}{\int \rho \mathrm{dA}}$
$\tilde{x}=\frac{\sum_{i} x_{c m i} \rho_{i} A_{i}}{\sum_{i} \rho_{i} A_{i}}$
$\tilde{y}=\frac{\sum_{i} y_{c m i} \rho_{i} A_{i}}{\sum_{i} \rho_{i} A_{i}}$

Buoyancy

$F_{B}=\rho g V$
Fluid Statics
$\mathrm{p}=\mathrm{pgh}$
$\mathrm{F}_{\text {eq }}=\mathrm{p}_{\text {avg }}(\mathrm{Lw})$

