Test 1

Name

Pledge: I have neither given nor received aid on this examination.

Signature:

Instructions:

- This is a closed-book, closed-notes exam.
- Please read the question on this exam carefully and answer only the questions I ask. Don't waste your time doing extra work, and don't skip any of the smaller questions within a problem. I can't grade what I can't see, and I can't give partial credit for something in your head.

EQUATION SHEET IS AT BACK

\qquad

Consider the system below where all surfaces are smooth. Let x_{1} denote the absolute position of mass A and x_{2} is the relative position of mass B with respect to mass A. A force F is applied to mass B.

Find:
a) Write down an expression for the kinetic energy T in terms of the generalized coordinates x_{1} and x_{2} their time derivatives. From this expression, identify the elements $m i j$, where:

$$
T=\frac{1}{2} \sum_{i=1}^{2} \sum_{j=1}^{2} m_{i j} \dot{q}_{i} \dot{q}_{j}
$$

b) Determine the generalized forces) associated with each generalized coordinate.

Solution:

$$
\begin{aligned}
& \vec{T}_{1}=x_{1} r, \overrightarrow{r_{2}}=\left(x_{1}+x_{2}\right) r \\
& \overrightarrow{V_{1}}=\dot{x}_{1} r, \vec{V}_{2}=\left(\dot{x}_{1}+\dot{x}_{2}\right) \hat{r} \\
& T=1 / 2 A \vec{V}_{1} \cdot \vec{v}_{1}+1 / 2 m \vec{v}_{2} \cdot \vec{v}_{2} \\
& T=1 / 2 A \dot{x}_{1}^{2}+1 / 2 m\left(\dot{x}_{2}^{2}+2 \dot{x}_{1} \dot{x}_{2}+\dot{x}_{1}^{2}\right) \\
& =1 / 2(m+A) \dot{x}_{1}^{2}+1 / 2(2 n) \dot{x}_{1} \dot{x}_{2}+1 / 2 m \dot{x}_{2}^{2}
\end{aligned}
$$

\qquad

$$
\begin{aligned}
& m_{11}=m+A_{1}, \quad m_{12}=m_{21}=m, \quad m_{22}=m \\
& {[m]=\left[\begin{array}{ll}
m+n t & m \\
m & m
\end{array}\right]}
\end{aligned}
$$

$$
d t t=F \hat{i} \cdot \delta r_{1} \hat{\imath}
$$

$$
\delta_{r_{1}}=\delta x_{1} \hat{\imath}+
$$

$$
d H=F \hat{i} \cdot\left(\delta x_{1} \hat{\imath}\right)
$$

$$
=F \delta x_{1}
$$

$$
Q_{1}=F \quad \text { and } Q_{2}=0
$$

A lumped mass m is a attached to a bar of negligible mass of length L. A spring of stiffness k is attached to lever at point A and the other end is allowed to slide on a smooth surface of a slot. Spring is unstretched at $\theta=0$.

Find:
a) Use the power equation method and show that the equation of motion of the system can be written as

$$
m L^{2} \ddot{\theta}+k a^{2} \sin \theta \cos \theta-m g L \sin \theta=0
$$

b) Use small angle approximations to derive the linear equation of motion around θ_{e} $=0(\mathrm{rad})$.
c) Bonus (2.5 points): The system has multiple equilibira . One set of equilibrium points $\theta_{\mathrm{e}}=0,2 \pi$, the other set corresponds to non-horizontal equilibirum points. Derive the equation that governs these non-horinzontal equilibrium points. Discuss the physics behind this phenomena.
d) Bonus (2.5 points): For what value of stiffness will the solution of the linear equations become unbounded. Discuss the physics behind this phenomena.

Solution:

\qquad
Test Problem 2 Additional Page
a)

$$
\begin{aligned}
& T=1 / 2 m v^{2} \quad U=1 / 2 k A^{2}+m 8 L \cos \theta \\
& T=1 / 2 m L^{2} \dot{\theta}^{2} \\
& u=1 / 2 k a^{2} \sin ^{2} \theta+m 8<\cos \theta \\
& T+u=1 / 2 m L^{2} \dot{\theta}^{2}+1 / 2 k a^{2} \sin ^{2} \theta+m q L \cos \theta \\
& \frac{d}{\tau}(T+U)=m L^{2} \ddot{\theta} \ddot{\theta}+k a^{2} \sin 0 \cos \theta \dot{\theta}-m q L \sin \theta \dot{\theta} \\
& =0 \\
& \left(m c^{2} \ddot{\theta}+k a^{2} \sin \theta \cos \theta \quad-n q L \sin \varnothing\right) \dot{\theta}=0 \\
& m L^{2} \ddot{\theta}+K a^{2} \sin \theta \cos \theta-m g L \sin \theta=0
\end{aligned}
$$

\qquad
Test Problem 2 Additional Page
b)

$$
\begin{aligned}
& \text { small } L^{\prime} s \cos \theta \approx 1, \sin \theta \approx \theta \\
& m L^{2} \ddot{\theta}+k a^{2} \theta-m g L \theta=0 \\
& m L^{2} \ddot{\theta}+\left(k a^{2}-m g L\right) \theta=0
\end{aligned}
$$

c)

Equilibrium point

$$
\begin{aligned}
& \theta=\theta_{e q} \quad \ddot{\theta}=0 \\
& k u^{2} \sin \theta_{e q} \cos \theta_{e q}-m q L \sin \theta_{e q}=0 \\
& \left(k a^{2} \cos \theta_{q q}-m q l\right) \sin \theta_{c q}=0 \\
& \sin \theta_{e q}=\partial \quad \theta_{e q}=0, \pi, 2 \pi, 3 \pi, \\
& k a^{2} \cos \theta_{c q}=m q L \\
& \theta_{e q}=\cos ^{-1}\left(\frac{m q L}{K a^{2}}\right)
\end{aligned}
$$

\qquad
d) $m c^{2} \ddot{0}+\left(k a^{2}-m q L\right) 0=0$
all coefficients must have same sign For solution to be bounded
$K a^{2}-m g L<0$ to be unbounded

$$
K_{a}{ }^{2}<m g L \rightarrow K<m q<a^{2}
$$

\qquad

Test Problem 3-40 points

Consider the system below, whose motion is described by the absolute coordinates shown. The cylinder rolls without slip with respect to the cart.

Find:
a) Use the method of influence coefficients to derive the flexibility matrix $[A]=[K]^{-1}$.
b) Write down the potential energy function U for this two-DOF system and use the following results from lecture to develop the stiffness matrix for the system:

$$
K_{i j}=\left.\frac{\partial^{2} U}{\partial q_{i} \partial q_{j}}\right|_{\mathbf{q}_{0}}
$$

Solution:

load applied at At

$$
\pm S F x: F-f-k a_{11}=0
$$

$$
\Rightarrow \Sigma F_{x}:-2 k a z+\theta=0
$$

$\uparrow \Sigma M_{0}: \quad \forall R=0$

$$
\begin{array}{ll}
a_{21}=0 & a_{12}=0 \\
a_{11}=1 / k &
\end{array}
$$

load applied at m

$$
\begin{aligned}
& \leftrightarrows \Sigma F_{x}:-k a_{12}-f=0 \\
& \Rightarrow \Sigma F_{x}: \quad-2 k a_{22}+f+F=0 \\
& \leftrightarrows \Sigma m_{0}: \quad f R=0 \\
& f=0 \quad a_{12}=0 \\
& a_{22}=1 / 2 k \\
& {[a]=\left[\begin{array}{ll}
1 / c & 0 \\
0 & 1 / 2 k
\end{array}\right]}
\end{aligned}
$$

ME 563 - Fall 2022 \qquad

$$
\begin{aligned}
& U=1 / 2 k x_{1}^{2}+1 / 2(2 k) x_{2}^{2} \\
& \frac{\partial U}{\partial x_{1}}=k x_{1} \quad \frac{\partial U}{\partial x_{2}}=2 k x_{2} \\
& K_{11}=\frac{\partial^{2} U}{\partial x^{2}}=K \\
& k_{12}=k_{z_{1}}=\frac{\partial^{2} u}{\partial x_{\partial} \partial x_{2}}=0 \\
& K_{2 z}=\frac{\partial^{2} U}{\partial x_{z}}=2 K \\
& {[x]=\left[\begin{array}{cc}
k & 0 \\
0 & 2 k
\end{array}\right]} \\
& {[a]=\left[\begin{array}{cc}
1 / k & 0 \\
0 & 1 / k
\end{array}\right]\left[\begin{array}{cc}
k & 0 \\
0 & 2 k
\end{array}\right]} \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Newton Euler

$\begin{aligned} \sum \vec{F} & =m \vec{a}_{g} \\ \sum \vec{M}_{A} & =I_{A} \vec{\alpha}\end{aligned}$
A is a fixed point or center of gravity

Power Equation

$T+U=T_{o}+U_{o}+W^{(n c)}$
Power $=\frac{\left.d W^{(} n c\right)}{d t}=\frac{d T}{d t}+\frac{d U}{d t}$

Lagrange's Equations

$\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{i}}\right)-\frac{\partial T}{\partial q_{i}}+\frac{\partial R}{\partial \dot{q}_{i}}+\frac{\partial U}{\partial q_{i}}=Q_{i}$
$R_{i}=\frac{1}{2} c_{i}{\dot{\Delta_{i}}}^{2}$
$U=\sum\left(U_{s p}\right)_{i}+\sum\left(U_{g r}\right)_{i}$
$\left(U_{s p}\right)_{i}=\frac{1}{2} k_{i} \Delta_{i}^{2}$
$\left(U_{g r}\right)_{i}=m_{i} g h_{i}$

Linearized Lagrange's Equations

$[M] \ddot{\vec{z}}+[C] \dot{\vec{z}}+[K] \vec{z}=\overrightarrow{0}$
$\vec{z}(t)=\vec{q}(t)-\vec{q}_{o}$
$M_{i k}=\left(m_{i k}\right)_{\vec{q}_{o}}=M_{k i}$
$C_{i k}=\left(\frac{\partial^{2} R}{\partial \dot{q}_{i} \partial \dot{q}_{k}}\right)=C_{k i}$
$K_{i k}=\left(\frac{\partial^{2} R}{\partial q_{i} \partial q_{k}}\right)=K_{k i}$

