Test 1

Name

Pledge

I have neither given nor received aid on this examination.

Instructions:

- This is a closed-book, closed-notes exam.
- You are NOT allowed to use a programmable calculator during the exam.
- Please read the question on this exam carefully and answer only the questions I ask. Don't waste your time doing extra work, and don't skip any of the smaller questions within a problem. I can't grade what I can't see and I can't give partial credit for something in your head.

A bar with an end mass m at G is attached to a wheel pt O. The end mass may be considered a particle. The wheel rolls without slip along a wall. A spring is attached to the wheel and deforms purely in verical (x) direction. The bar has neglible mass. The wheel has mass m and radius R and mass moment of inertia about its center of gravity $I^{\sigma}=1 / 2 m R^{2}$. The coordinate x denotes the absolute position of the wheel's center at O and θ the angular position of the bar.

a) Determine the expression for potential energy U in terms of the generalized coordinates x and θ and determine the equilibrium positions of the system.
b) Write down an expression for the kinetic energy T in terms of the generalized coordinates x and θ and their time derivatives. From this expression, identify the elements $m_{i j}$, where:

$$
T=\frac{1}{2} \sum_{i=1}^{2} \sum_{j=1}^{2} m_{i j} \dot{q}_{i} \dot{q}_{j}
$$

c) Determine the mass matrix $[M]$ and the stiffness matrix $[K]$ corresponding small oscillations about the equilibrium state.

\qquad

$$
\begin{aligned}
& \text { a) } \\
& u=-m g x-m g(x+c \cos \theta)+1 / 2 k x^{2} \\
& \frac{\partial U}{\partial x}=-m g-m q+k x=-2 m q+k x \\
& \frac{d u}{2 \theta}=+m q 2 \sin \phi \sim \mathbb{D} \\
& \left.\frac{\partial U}{\partial q} \right\rvert\,=0 \rightarrow-2 m q+K x_{c} \rightarrow x_{c}=2 m g / c \\
& m q L \sin \mathbb{D}_{c}=0 \rightarrow \theta_{c}=n \pi \\
& n=0,1,2
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \\
& r_{0}=x r \quad \vec{r}_{c}=r_{0}+\vec{j}_{c / 0}=x_{r}+L \cos \theta T+L \sin \theta ; \\
& *_{0}=\dot{x}^{r} \quad \bar{r}_{c}=(x+\cos \theta) \hat{\jmath}+L \sin \theta j \\
& \vec{\theta}_{0}=(\dot{x}-\dot{\theta} \sin \theta) i+\dot{\theta} L \cos \theta g \\
& T=1 / 2 n \bar{v}_{0} \cdot \vec{v}_{0}+1 / 2 m \vec{v}_{0} \times \vec{v}_{0}+1 / 2 I^{c} \dot{\phi}^{2} \\
& =\frac{1}{2} m \dot{x}^{2}+1 / 2 m / \dot{x}^{2}-2 \dot{x} \dot{\theta} l \sin \theta+\dot{\theta}^{2} L^{2} \sin ^{2} \theta \\
& \left.+1 / 2 I^{6} \dot{\phi}^{2}+\dot{\theta}^{2} L^{2} \cos ^{2} \theta\right) \\
& \dot{x}=R \dot{\phi} \\
& T=m\left(\dot{x}^{2}-\dot{x} \dot{\theta} L \sin \theta+1 / 2 \dot{\theta}^{2} L^{2}\right)+1 / 2 I_{6} / R^{2} \dot{x}^{2}
\end{aligned}
$$

\qquad

$$
\begin{aligned}
& \begin{array}{ll}
m_{11}=2 m+I_{H / L^{2}} \\
m_{12}=m / 2=m L \sin \theta
\end{array} \quad[m]=\left[\begin{array}{ll}
2 m+I_{U / R} & -m \sin \theta \\
-m \angle \sin \theta & m L^{2}
\end{array}\right] \\
& m_{22}=m L^{2} \\
& {\left.[m]\right|_{q_{0}}=\left[\begin{array}{cc}
2 n+I_{s / e^{2}} & 0 \\
0 & m L^{2}
\end{array}\right]} \\
& k_{11}=k \quad k_{12}=k_{21}=0 \\
& k_{22}=m g 2 \cos \theta \\
& {[k]=\left[\begin{array}{lll}
x & 0 & 1 \\
0 & \text { gusto } & 0
\end{array}\right]}
\end{aligned}
$$

A nonlinear linear single degree of freedom oscillator is attached to spring whose force is given $F_{\mathrm{s}}=k_{1} x+k_{2} x^{2}$ where the stiffness's $k_{1}=4000 \mathrm{~N} / \mathrm{m}$, and $k_{2}=20 \mathrm{~N} / \mathrm{m}^{2}$ and a mass $m=1000 \mathrm{~kg}$ and $x(0)=1 \mathrm{~mm}$ and $(0)=2.34 \mathrm{~mm} / \mathrm{s}$. ©
a) Derive the linear equation of motion for the system small oscillations about an near equilibrium point.

b) Plot the solution for at least two periods. Determine numerical values for and label the initial conditions, amplitude, and period on the plot. Recall the solution to undamped oscillator can be written as
\qquad

c) If a damper is attached to the system with damping coefficient of $c=200 \mathrm{~kg} / \mathrm{s}$. Determine the damping ratio. Is the linear system underdamped, overdamped, or critically damped. If the system is underdamped find the damped natural frequency. If the system is overdamped or critically damped report the eigenvalues of the system.

\qquad

$$
\sum k x:-k_{1} x-k_{2} x^{2}=m \ddot{x}
$$

$$
m \ddot{x}+k,-x+k_{2} x^{2}=0
$$

\qquad Test Problem 2 Additional Page

$$
\begin{aligned}
& x=x_{c}+\hat{x} \quad x=x \quad \quad \hat{x}=\dot{x}=0 \\
& k_{1} x_{c}+k_{2} x_{e}^{2}=0 \\
& x_{c}\left(k_{1}+k_{2}\right) x_{c}=0 \\
& x_{c}=0 \quad x_{c}=\frac{-k_{1}}{k_{2}} \\
& F_{0}=+k_{1} x+\left.k_{2} x^{2}\right|_{x=0}+\left.\left(k_{1}+2 k_{2} x\right)\right|_{x_{c}} ^{\left(n_{c}^{n}\right)} \\
& F_{s} \cong k_{1} \hat{x} \\
& m \ddot{x}+k_{1} \ddot{x}=0 \quad w_{n}=\sqrt{k_{1} / m}
\end{aligned}
$$

$$
\begin{aligned}
& x_{2} x_{2}-w_{n} C \sin w_{0} t+w_{n} D_{\text {costont }}
\end{aligned}
$$

$$
D=\frac{k_{0}}{2 N_{n}}
$$

\qquad

A 2-DOF system has the follow equations of motion.

$$
m\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left\{\begin{array}{l}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right\}+k\left[\begin{array}{cc}
\alpha+\frac{1}{2} & \alpha-1 \\
\alpha-1 & 2
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\overrightarrow{0}
$$

a) Find the value of α that admits a rigid body mode where $\alpha>0$.
b) Using a value of α found in a) to determine the natural frequencies and mode shapes of the system.
d) Can you find initial conditions
a) $\operatorname{det}[k]=0$

$$
\begin{aligned}
& \Delta_{k}=2 \alpha+1-(\alpha-1)^{2}=0 \\
& =2 \alpha+1-\left(\alpha^{2}-2 \alpha+1\right)=0 \\
& =2 \alpha+1-\alpha^{2}+2 \alpha-1=0 \\
& =4 \alpha-\alpha^{2}=0 \\
& \alpha=0 \quad \alpha=4 \\
& n\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \ddot{\vec{x}}+k\left[\begin{array}{cc}
9 / 2 & 3 \\
3 & 2
\end{array}\right] \bar{x}=0 \\
& {\left[\begin{array}{cc}
-w^{2} m+9 / 2 k & 3 k \\
3 k & -w^{2} m+2 k
\end{array}\right]\left\{\begin{array}{c}
x_{1} \\
X_{2}
\end{array}\right\}=\overrightarrow{0}} \\
& \left(-w^{2} m+9 / 2 k\right)\left(-w^{2} m+2 k\right)-9 k^{2}=0
\end{aligned}
$$

\qquad

$$
\begin{aligned}
& w^{4} m^{2}-2 k m w^{2}-9 / 2 k m w^{2}+9 k^{2}-9 k^{2}=0 \\
& w^{4} m^{2}-\frac{13}{2} k m w^{2}=0 \\
& w^{4}-\frac{13}{2} k / m w^{2}=0 \\
& \left(w^{2}-\frac{13}{2} \frac{k}{m}\right) w^{2}=0 \\
& W= \pm \sqrt{13 / 2} k / m \quad W=0
\end{aligned}
$$

Modeshapes

$$
\begin{aligned}
& \left(-w^{2} m+9 / 2 k\right) x_{1}+3 k x_{2}=0 \\
& \frac{x_{2}}{x_{1}}=\frac{-w^{2} m+a / 2 k}{-3 k}=\frac{+w^{2} m}{3 k}-\frac{3}{2}
\end{aligned}
$$

ME 563 - Fall 2022
Test Problem 3 Additional Page

$$
\frac{x_{2}}{x_{1}}=\frac{2 v^{2} m}{3 k}-\frac{3}{2}
$$

$w_{v}=0$

$$
\begin{aligned}
& \frac{x_{2}}{x_{1}}=-3 / 2 \\
& w=\sqrt{13} / 2 \sqrt{14} / m
\end{aligned}
$$

$$
\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left\{\begin{array}{c}
1 \\
-3 / 2
\end{array}\right\}
$$

$$
\frac{x_{2}}{x_{1}}=\frac{13}{6}-3 / 2=2 / 3
$$

$$
\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left\{\begin{array}{l}
1 \\
2 / 3
\end{array}\right\}=
$$

$$
\begin{aligned}
& \alpha_{1}=\frac{1}{\sqrt{x^{\prime T}[m] x}}=\frac{1}{\sqrt{\{1-3 / 2]\left[\begin{array}{ll}
1 \\
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 / 2
\end{array}\right] m}} \\
& \alpha_{1}=\frac{1}{\sqrt{m\left(1^{2}+9 / 4\right)}}=\frac{1}{\sqrt{m^{13 / 4}}} \\
& \alpha_{1}=\frac{2}{\sqrt{13 m}} \\
& \alpha_{2}=\frac{1}{\sqrt{\{12 / 3\}\left\{\begin{array}{l}
1 \\
2 / 3
\end{array}\right\}^{m}}}=\frac{1}{\sqrt{m(1+4 / a)}} \\
& \alpha_{2}=\frac{3}{\sqrt{13 m}} \\
& X=(c,+s, t) \vec{X}^{\prime}+c_{2} \vec{X}_{2} \cos \\
& x_{x}(0)=0 \quad s_{1}=s_{2} \\
& +S_{2} X_{2} \cos \cos 5 \\
& 2(0)=c \text { 人 } x \text { c多 }
\end{aligned}
$$

$$
\begin{gathered}
\bar{x}=c_{1} \bar{X}_{1}+c_{2} \bar{X}_{2} \cos 2 \sqrt{2} t \\
c_{2}=x^{\top}[m]\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right) \\
0=\frac{3}{\sqrt{13 m}}\left(\begin{array}{ll}
1 & 2 / 3
\end{array}\right)\left[\begin{array}{l}
m \\
0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}
\end{array}\right. \\
\left(\begin{array}{l}
\left.\frac{3 \sqrt{m}}{\sqrt{13}}\right)\left(\begin{array}{l}
x_{1}+2 / 3 x_{2}
\end{array}\right)=0 \\
x_{1}=-2 / 3 x_{2}
\end{array}\right.
\end{gathered}
$$

Newton Euler $\begin{aligned} \sum \vec{F} & =m \vec{a}_{g} \\ \sum \vec{M}_{A} & =I_{A} \vec{\alpha} \end{aligned}$ A is a fixed point or center of gravity	SDOF Response $\begin{aligned} & m \ddot{x}+c \dot{x}+k x=0 \\ & \quad \ddot{x}+2 \zeta \omega_{n} \dot{x}+\omega_{n}^{2} x=0 \\ & 2 \zeta \omega_{n}=\frac{c}{m}, \omega_{n}^{2}=\frac{k}{m} \\ & 0 \leq \zeta \leq 1 \\ & x(t)=\exp -\zeta \omega_{n} t\left(C \cos \omega_{d} t+S \sin \omega_{d} t\right) \end{aligned}$
Power Equation $\begin{aligned} & T+U=T_{o}+U_{o}+W^{(n c)} \\ & \text { Power }=\frac{\left.d W^{(} n c\right)}{d t}=\frac{d T}{d t}+\frac{d U}{d t} \end{aligned}$ Lagrange's Equations $\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{i}}\right)-\frac{\partial T}{\partial q_{i}}+\frac{\partial R}{\partial \dot{q}_{i}}+\frac{\partial U}{\partial q_{i}}=Q_{i}$	Eigenvalue Problem $\begin{aligned} & {[M] \ddot{\vec{x}}+[K] \vec{x}=\overrightarrow{0},} \\ & \vec{x}(t)=\vec{X} \exp i \omega t \\ & \left(-\omega^{2}[M]+[K]\right) \vec{X}=\overrightarrow{0} \end{aligned}$ MDOF Response $\begin{aligned} \vec{x}(t) & \left.=\sum_{j=1}^{N} \vec{X}^{(} j\right)\left[c_{j} \cos \omega_{j} t+s_{j} \sin \omega_{j} t\right] \\ c_{j} & =\frac{\vec{X}^{(j) T}[M] \vec{x}(0)}{\vec{X}^{(j) T}[M] \vec{X}(j)} \\ s j & =\frac{\vec{X}^{(j) T}[M] \dot{\vec{x}}(0)}{\omega_{j} \vec{X}^{(j) T}[M] \vec{X}^{(j)}} \end{aligned}$
Linearized Lagrange's Equations $[M] \ddot{\vec{z}}+[C] \dot{\vec{z}}+[K] \vec{z}=\overrightarrow{0}$ $\begin{aligned} \vec{z}(t) & =\vec{q}(t)-\vec{q}_{0} \\ M_{i k} & =\left(m_{i k}\right)_{\vec{q}_{0}}=M_{k i} \\ C_{i k} & =\left(\frac{\partial^{2} R}{\partial q_{i} \partial q_{k}}\right)_{\vec{q}_{0}}=C_{k i} \\ K_{i k} & =\left(\frac{\partial^{2} U}{\partial q_{i} \partial q_{k}}\right)_{\vec{q}_{0}}=K_{k i} \end{aligned}$	Mass Normalized Eigenvector $\begin{aligned} \alpha_{j} & =\frac{1}{\sqrt{\vec{X}^{(j) T}[M] \vec{X}^{j}}} \\ \vec{X}_{m}^{j} & =\alpha_{m} \vec{X}^{j} \\ c_{j} & =\vec{X}_{m}^{(j) T}[M] \vec{x}(0) \\ s_{j} & =\frac{\vec{X}_{m}^{(j) T}[M] \dot{\vec{x}}(0)}{\omega_{j}} \end{aligned}$
	$\begin{aligned} & \text { Log Decrement SDOF } \\ & \delta=\ln \left(\frac{x_{j}}{x_{j+1}}\right) \\ & \zeta=\frac{\delta / 2 \pi}{\sqrt{1+(\delta / 2 \pi)^{2}}} \\ & \zeta \ll 1 \rightarrow \zeta=\frac{\delta}{2 \pi} \end{aligned}$

Test 1

Name \qquad
Pledge

I have neither given nor received aid on this examination.

Instructions:

- This is a closed-book, closed-notes exam. .
- Please read the question on this exam carefully and answer only the questions I ask. Don't waste your time doing extra work, and don't skip any of the smaller questions within a problem. I can't grade what I can't see and I can't give partial credit for something in your head.
\qquad

A bar with an end mass m at G is attached to a wheel pt O. The end mass may be considered a particle. The wheel rolls without slip along a wall. A spring is attached to the wheel and deforms purely in verical direction, x measures the distance point O moves. The bar has neglible mass. The wheel has mass m and radius R and mass moment of inertia about its center of gravity I^{G} $=1 / 2 m R^{2}$. The coordinate x denotes the absolute position of the wheel's center at O and θ the angular position of the bar.

a) Determine the expression for potential energy U in terms of the generalized coordinates x and θ and determine the equilibrium positions of the system.
b) Write down an expression for the kinetic energy T in terms of the generalized coordinates x and θ and their time derivatives. From this expression, identify the elements $m_{i j}$, where:

$$
T=\frac{1}{2} \sum_{i=1}^{2} \sum_{j=1}^{2} m_{i j} \dot{q}_{i} \dot{q}_{j}
$$

c) Determine the mass matrix $[M]$ and the stiffness matrix $[K]$ corresponding small oscillations about the equilibrium state.

\qquad
a)

$$
\begin{aligned}
& u=1 / 2 x x^{2}-m g x-m 8(x+\cos \theta) \\
& =1 / 2 k x^{2}-2 m q x-m q L \cos \theta \sim A n g \\
& \frac{\partial u}{\partial x}=k x-2 n g \quad \frac{\partial u}{\partial \theta}=+m q L \sin \theta \\
& \left.\frac{\partial u}{\partial x}\right|_{x_{c}}=k x_{c}-2 m q=0 \rightarrow x_{e}=\frac{+2 m q}{k} \\
& \left.\frac{d U}{\partial U}\right|_{0_{e}}=+m g L \sin \theta_{e}=0 \quad \rightarrow O_{c}=n \pi \quad n=0,1,2 \ldots \\
& \overrightarrow{q_{c}}=\left\{\begin{array}{l}
2 m q / k \\
n \pi
\end{array}\right\}, n=0,1,2 \ldots \text { ans }
\end{aligned}
$$

b)

$$
\begin{aligned}
T= & 1 / 2 m \vec{H} \cdot \overrightarrow{\theta_{1}}+1 / 2 I^{6} \dot{\phi}^{2}+1 / 2 m \vec{\theta}_{6} \cdot \vec{H} \\
= & 1 / 2 m \dot{x}^{2}+1 / 2 I^{6} \dot{\phi}^{2}+1 / 2 m\left(\dot{x}^{2}-2 \dot{x} \dot{\theta} L \sin \theta\right. \\
& \left.+\dot{\theta}^{2} L^{2} \sin ^{2} \theta+\dot{\theta} L^{2} \cos ^{2} \theta\right) \\
T= & 1 / 2(2 m) \dot{x}^{2}+1 / 2 I^{6} \dot{\phi}^{2}+1 / 2 m \dot{\theta}^{2} L^{2}+1 / 2(-2 m L \sin \theta) \dot{x} \theta
\end{aligned}
$$

Kinematics $\dot{x}=R \ddot{\phi} \rightarrow \dot{\phi}=\dot{x} / R$
\qquad Test Problem 1 Additional Page

$$
\begin{aligned}
& T=1 / 2\left(2 m+\frac{T 6}{\left.T / R^{2}\right)} \dot{x}^{2}+1 / 2 m L^{2} \dot{\theta}^{2}+1 / 2(-2 m L \sin \theta) \dot{x} \dot{\theta}\right. \\
& 1 / 2 R^{2} / R^{2} \\
& T=1 / 2\left(\frac{s / 2 m)}{\sim} \dot{x}^{2}+1 / 2(-2 m L \sin \theta) \dot{x} \dot{\theta}+1 / 2 m^{2} \dot{m}^{2} \sim \dot{\theta}_{11}^{2} \sim A n s\right. \\
& m_{22}=2 m_{21}
\end{aligned}
$$

c)

$$
\begin{aligned}
& {[m]=m\left[\begin{array}{cc}
k_{2} & -\angle \sin \varphi \\
-L \sin \varphi & L^{2}
\end{array}\right]_{\overrightarrow{q_{e}}}=m\left[\begin{array}{cc}
s / 2 & 0 \\
0 & L^{2}
\end{array}\right] \sim \text { Ans }} \\
& k_{11}=\left.\frac{d^{2} u}{\left.\partial x_{1}^{2}\right|_{\overrightarrow{q_{e}}}}\right|_{k} \quad k_{12}=\frac{d^{2} u}{\partial x \partial}=k_{21}=0 \\
& k_{22}=\left.\frac{\partial^{2} u}{\partial Q^{2}}\right|_{\overrightarrow{q_{e}}}=m q L \cos Q c=m g L \\
& {[k]=\left[\begin{array}{lll}
k & 0 \\
0 & m q L
\end{array}\right] \sim \text { Ans. }}
\end{aligned}
$$

Name
Test Problem 2-30 points
A nonlinear single degree of freedom oscillator is attached to spring whose resistive force is given $F_{\mathrm{s}}=k_{1} x+k_{2} x^{2}$ where the stiffness's $k_{1}=4000 \mathrm{~N} / \mathrm{m}$, and $k_{2}=20 \mathrm{~N} / \mathrm{m}^{2}$ and a mass $m=1000$ kg and $x(0)=0 \mathrm{~mm}$ and $v(0)=2 \mathrm{~mm} / \mathrm{s}$.
a) Determine the equilibrium points of the system. Derive the linear equation of motion of the system for small oscillations around equilibrium point. Hint there are two, one may not be physically possible.

b) Plot the solution of the equation derived in a) for at least two periods. Determine numerical values for the initial conditions, amplitude, and period and label them on the plot.
c) If a damper is attached to the system with damping coefficient of $c=200 \mathrm{~kg} / \mathrm{s}$. Determine the damping ratio. Is the linear system underdamped, overdamped, or critically damped. If the system is underdamped find the damped natural frequency. If the system is overdamped or critically damped report the eigenvalues of the system.

can use Western

a)

$$
\begin{aligned}
& \text { Norton Euler } \\
& \Rightarrow \text { aF } x:-k_{1} x-k_{2} x^{2}=m \ddot{x} \\
& m \ddot{x}+k_{1} x+k_{2} x^{2}=0 \\
& x_{c}=x+\tilde{x} \\
& k_{1} x_{c}+k_{2} x_{c}^{2}=0 \\
& x_{2}\left(k_{1}+k_{2} x_{e}\right)=0 \rightarrow x_{2}=0 \quad \text { or } \quad x_{2}=-k_{1}=\frac{4000}{20} 5 \\
& =-200 \mathrm{~m}
\end{aligned}
$$

\qquad

Vicutan Euler
Taylor Series

$$
\begin{aligned}
& k_{1} x+k_{2} x^{2} \simeq k_{1} x+\left.k_{2} x^{2}\right|_{x} \\
& +\left(k_{1}+2 k_{2} x\right) / \lambda_{\lambda_{c}} \\
& m \bar{x}+\left(k_{1}+2 k_{2} x_{c}\right) \hat{x}=0 \\
& \sim \text { mas } \sim_{k \text { Kin }}=8000
\end{aligned}
$$

b)

The equation depends on equilibrium points

$$
\ddot{x}+w_{n}^{2} x=0 \quad w_{n}=\left\{\begin{array}{l}
\sqrt{k_{1} / m}=2 \mathrm{ad} / \mathrm{s} \quad x_{c}=0 \\
\frac{\sqrt{k_{1}-\frac{2 k_{1}}{k_{2}}}=3.46 \mathrm{rad} / \mathrm{s}}{\mathrm{~m}}=0=\frac{-k_{1}}{k_{2}}
\end{array}\right.
$$

Sou only need to analyze one equilibrium point.
The solution is of the form

$$
\begin{aligned}
& x(t)=C \cos w_{n} t+S \sin w_{n} t \quad \dot{x}(0)=2 \mathrm{~mm} / \mathrm{s}=v_{0} \\
& \dot{x}(t)=-w_{n} c \sin w_{n} t+w_{n} S \cos w_{n} t \\
& 0=C(1)+S(0) \quad C=0 \quad \dot{x}(t)=\frac{v_{0}}{w_{n}} \sin w_{n} t \\
& v_{0}=-w_{n}\left((0)+w_{n} S(1) \quad s=v_{0} / w_{n}\right.
\end{aligned}
$$

$$
\begin{array}{ll}
x_{c}=0 \mathrm{~m} & w_{n}=2 \mathrm{rad} / \mathrm{s} \\
x_{c}=-0,0050 \mathrm{~m} & w_{n}=3,46 \mathrm{rad} / \mathrm{s}
\end{array}
$$

C)

$$
\begin{array}{ll}
c / m=2 \xi w_{n} & \\
\xi=c / m w_{n}= & \\
x_{c}=0.0 & w_{n}=2 \text { rads } \quad \xi=0,05 \\
x_{c}=-200 \mathrm{~m} \quad w_{1}=1,999 \text { nad ls } \quad \xi \cong 0,0289
\end{array}
$$

both are undevdamped,

Dar only needed to do the analysis for one equilibrium point

A 2-DOF system has the follow equations of motion.

$$
m\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left\{\begin{array}{l}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right\}+k\left[\begin{array}{cc}
\alpha+\frac{1}{2} & \alpha-1 \\
\alpha-1 & 2
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\overrightarrow{0}
$$

a) Find the value of α that admits a rigid body mode where $\alpha>0$.
b) Using a value of α found in a) to determine the natural frequencies and mass normalized mode shapes of the system.
c) If possible, find initial conditions such that the only the rigid body mode is present in the response.
a) $\operatorname{det}[k]=0$

$$
\begin{aligned}
& k\left(2(\alpha+1 / 2)-(\alpha-1)^{2}\right)=0 \\
& 2 \alpha+1-\left(\alpha^{2}-2 \alpha+1\right)=0 \\
& 2 \alpha+2 \alpha+1-1+\alpha^{2}=0 \\
& \alpha^{2}+4 \alpha=0 \quad \alpha=0 \quad \alpha=4 \sim \text { Ans }
\end{aligned}
$$

b)

$$
n\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}+k\left[\begin{array}{ll}
y_{1} & 3 \\
3 & 2
\end{array}\right]\left\{\begin{array}{l}
x_{2} \\
x_{2}
\end{array}\right\}=\overline{0}
$$

$$
x=\vec{x} e^{i \omega t}
$$

$$
\left(-w^{2}[m]+[[]]\right) \bar{x}=0
$$

$$
\left[\begin{array}{cc}
=w^{2} m+9 / 2 k & 3 k \\
3 k & -w^{2} m+z k
\end{array}\right]\left\{\begin{array}{l}
I_{1} \\
x_{2}
\end{array}\right\}=\overrightarrow{0}
$$

\qquad

$$
\begin{aligned}
|b| & =\left(-w^{2} m+9 / 2 k\right)\left(-w^{2} m+2 k\right)-9 k^{2}=0 \\
& =w^{4} m^{2}-2 w^{2} m k-9 / 2 w^{2} m k+9 k^{2}-9 k^{2}=0 \\
& =w^{4} m^{2}-13 / 2 w^{2} m k=0 \\
& =w^{4} m-13 / 2 w^{2} k=0 \\
& =\left(w^{2} m-13 / 2 k\right) w^{2}=0 \quad \begin{array}{l}
w_{1}=0 \\
w_{2}=\sqrt{13} / 2 \sqrt{k} / m
\end{array} \operatorname{Aus}
\end{aligned}
$$

Pick est row of D

$$
\begin{aligned}
& \left(-w^{2} m+q / 2 k\right) I_{1}+3 k I_{2}=0 \\
& \left(\frac{I_{2}}{I_{1}}\right)^{i}=\frac{w_{i}^{2} m-q / 2 k}{3 k}=\frac{w_{i}^{2} m}{3 k}-\frac{3}{2} \\
& w_{1}=0 \\
& \left(\frac{x_{2}}{I_{1}}\right)^{\prime}=-3 / 2 \quad \vec{X}^{\prime}=\left\{\begin{array}{l}
1 \\
-3 / 2
\end{array}\right\} \sim \text { Ans } \\
& w_{2}=\sqrt{13 / 2} \sqrt{k / m} \\
& \left(\frac{X_{2}}{I_{1}}\right)^{2}=\frac{\left(\left(\sqrt{m_{2}}\right) \sqrt{k / m}\right)^{2} m}{3 k}-3 / 2
\end{aligned}
$$

\qquad

$$
\begin{aligned}
\left(\frac{I_{2}}{I_{1}}\right)^{2}= & \frac{13 / 2 k / n m}{3 k}-3 / 2 \\
& =13 / 6-3 / 2=13 / 6-9 / 6=4 / 6=2 / 3 \\
\vec{X}^{2} & =\left\{\begin{array}{l}
1 \\
2 / 3
\end{array}\right\}
\end{aligned}
$$

Calculate ar's for mode shapes

$$
\begin{aligned}
& \alpha_{1}=\frac{1}{\sqrt{\{1-3 / 2\} m\left[\begin{array}{l}
0 \\
0
\end{array}\right]\left\{\begin{array}{l}
1 / 2\}
\end{array}\right.}=\frac{1}{\sqrt{m} \sqrt{1+9 / 4}}}=\frac{1}{\sqrt{13 / 4 m}} \\
&=\frac{2}{\sqrt{13 m}} \\
& \alpha_{2}=\frac{1}{\left.\sqrt{\{12 / 3\} m\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]}\right]\{1 / 3\}}=\frac{1}{\sqrt{m} \sqrt{1+4 / 9}}=\frac{1}{\sqrt{13 / 9 m}} \\
&=\frac{3}{\sqrt{13 m}}
\end{aligned}
$$

$$
\vec{X}^{\prime}=\frac{2}{\sqrt{13 m}}\left\{\begin{array}{c}
1 \\
-3 / 2
\end{array}\right\} \quad \vec{X}^{2}=\frac{3}{\sqrt{13 m}}\left\{\begin{array}{c}
1 \\
2 / 3
\end{array}\right\} \sim A n s
$$

c)

$$
\begin{aligned}
& \vec{x}(t)=\left(c_{1}+s_{1} t\right) \vec{X}^{\prime}+\left(c_{2} \cos \omega_{2} t+s_{2} \sin \omega_{2} t\right) \vec{X}^{2} \\
& c_{1}=\overrightarrow{\underline{X}}^{\prime \top}[m] \vec{x}(0) \quad c_{2}=\vec{X}^{2 T}[m] \vec{x}(0) \\
& s_{1}=\vec{X}^{\prime \top}[m] \dot{\vec{x}}(0) \quad s_{2}=\vec{x}^{2 T}[m] \dot{\vec{x}}(0)
\end{aligned}
$$

several options
1)

$$
\begin{aligned}
& \vec{x}(t)=4 \vec{X}^{\prime} \sim \text { No notion } \sim \text { no strain no } \\
& \dot{x}(0)=0 \rightarrow s_{1}=s_{2}=0 \\
& c_{2}=\frac{3}{\sqrt{13} m}\left\{\begin{array}{ll}
1 & z_{3}
\end{array}\right\}\left[\begin{array}{cc}
n & 0 \\
0 & m
\end{array}\right]\left\{\begin{array}{l}
x_{10} \\
x_{20}
\end{array}\right\}=0 \\
& c_{2}=\frac{3 \sqrt{m}}{\sqrt{13}}\left(x_{10}+4 / 3 x_{20}\right)=0 \rightarrow x_{10}=-2 / 3 x_{20} \sim \text { Ans } \\
& \therefore c_{1} \quad x_{20}=1 \quad x_{10}=-x_{3} \\
& c_{1}=\frac{2}{\sqrt{3} \sqrt{m}}\left\{\begin{array}{ll}
1 & -3 / 2
\end{array}\right\}\left[\begin{array}{ll}
m & 0 \\
0 & m
\end{array}\right]\left\{\begin{array}{l}
1 \\
-2 / 3
\end{array}\right\} \\
& c_{1}=\frac{2 \sqrt{m}}{\sqrt{13}}\{1-3 / 2\}\left\{\begin{array}{c}
1 \\
-2 / 3
\end{array}\right\}=\frac{2 \sqrt{m}}{\sqrt{13}}(2)=\frac{4 \sqrt{m}}{\sqrt{13}}
\end{aligned}
$$

2)

$$
\begin{aligned}
\vec{x}(t) & =s_{1} t \vec{x}^{\prime} \\
\vec{x}(0) & =0 \rightarrow c_{1}=c_{2}=0 \\
s_{2} & =\frac{3}{\sqrt{139}}\left\{\begin{array}{ll}
1 & 2 / 3
\end{array}\right\}\left[\begin{array}{ll}
m & 0 \\
0 & m
\end{array}\right]\left\{\begin{array}{l}
\dot{x}_{10} \\
i_{20}
\end{array}\right\}=0 \\
& =\frac{3}{\sqrt{13}} \sqrt{n}\left\{\dot{x}_{10}+2 / 3 \dot{x}_{20}\right\}=0 \quad x_{10}=-2 / s \dot{x}_{20} \text { wins }
\end{aligned}
$$

following the previous andes's

$$
S_{2}=\frac{4 \sqrt{m}}{\sqrt{13}}
$$

3) $\bar{x}(t)=c_{1} \bar{X}^{\prime}+s, t \vec{X}^{\prime}$
then from previous

$$
\begin{aligned}
& c_{2}=\frac{3 \sqrt{m}}{\sqrt{3}}\left(x_{10}+2 / 3 x_{20}\right)=0 \rightarrow x_{10}=-2 / 3 x_{20} \\
& s_{2}=\frac{3 \sqrt{m}}{\sqrt{3}}\left\{\dot{x}_{10}+2 / \dot{x}_{20}\right)=0 \rightarrow \dot{x}_{10}=-2 / 3 \dot{x}_{20}
\end{aligned}
$$

Newton Euler $\begin{aligned} \sum \vec{F} & =m \vec{a}_{g} \\ \sum \vec{M}_{A} & =I_{A} \vec{\alpha} \end{aligned}$ A is a fixed point or center of gravity	SDOF Response $\begin{aligned} & m \ddot{x}+c \dot{x}+k x=0 \\ & \quad \ddot{x}+2 \zeta \omega_{n} \dot{x}+\omega_{n}^{2} x=0 \\ & \quad 2 \zeta \omega_{n}=\frac{c}{m}, \omega_{n}^{2}=\frac{k}{m} \\ & 0 \leq \zeta \leq 1 \\ & x(t)=\exp -\zeta \omega_{n} t\left(C \cos \omega_{d} t+S \sin \omega_{d} t\right) \end{aligned}$
Power Equation $\begin{aligned} & T+U=T_{o}+U_{o}+W^{(n c)} \\ & \text { Power }=\frac{\left.d W^{(} n c\right)}{d t}=\frac{d T}{d t}+\frac{d U}{d t} \end{aligned}$ Lagrange's Equations $\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{i}}\right)-\frac{\partial T}{\partial q_{i}}+\frac{\partial R}{\partial \dot{q}_{i}}+\frac{\partial U}{\partial q_{i}}=Q_{i}$	Eigenvalue Problem $\begin{aligned} & {[M] \ddot{\vec{x}}+[K] \vec{x}=\overrightarrow{0},} \\ & \vec{x}(t)=\vec{X} \exp i \omega t, \\ & \left(-\omega^{2}[M]+[K]\right) \vec{X}=\overrightarrow{0} \end{aligned}$ MDOF Response $\begin{aligned} \vec{x}(t) & \left.=\sum_{j=1}^{N} \vec{X}^{(} j\right)\left[c_{j} \cos \omega_{j} t+s_{j} \sin \omega_{j} t\right] \\ c_{j} & =\frac{\vec{X}^{(j) T}[M] \vec{x}(0)}{\vec{X}^{(j) T}[M] \vec{X}(j)} \\ s j & =\frac{\vec{X}^{(j) T}[M] \dot{\vec{x}}(0)}{\omega_{j} \vec{X}^{(j) T}[M] \vec{X}^{(j)}} \end{aligned}$
Linearized Lagrange's Equations $[M] \ddot{\vec{z}}+[C] \dot{\vec{z}}+[K] \vec{z}=\overrightarrow{0}$ $\begin{aligned} \vec{z}(t) & =\vec{q}(t)-\vec{q}_{0} \\ M_{i k} & =\left(m_{i k}\right)_{\vec{q}_{0}}=M_{k i} \\ C_{i k} & =\left(\frac{\partial^{2} R}{\partial q_{i} \partial q_{k}}\right)_{\vec{q}_{0}}=C_{k i} \\ K_{i k} & =\left(\frac{\partial^{2} U}{\partial q_{i} \partial q_{k}}\right)_{\vec{q}_{0}}=K_{k i} \end{aligned}$	Mass Normalized Eigenvector $\begin{aligned} \alpha_{j} & =\frac{1}{\sqrt{\vec{X}^{(j) T}[M] \vec{X}^{j}}} \\ \vec{X}_{m}^{j} & =\alpha_{m} \vec{X}^{j} \\ c_{j} & =\vec{X}_{m}^{(j) T}[M] \vec{x}(0) \\ s_{j} & =\frac{\vec{X}_{m}^{(j) T}[M] \dot{\vec{x}}(0)}{\omega_{j}} \end{aligned}$
	$\begin{aligned} & \text { Log Decrement SDOF } \\ & \delta=\ln \left(\frac{x_{j}}{x_{j+1}}\right) \\ & \zeta=\frac{\delta / 2 \pi}{\sqrt{1+(\delta / 2 \pi)^{2}}} \\ & \zeta \ll 1 \rightarrow \zeta=\frac{\delta}{2 \pi} \end{aligned}$

