Test 1

Name KEY

Pledge

I have neither given nor received aid on this examination.

Instructions:

- This is a closed-book, closed-notes exam.
- You are NOT allowed to use a programmable calculator during the exam.
- Please read the question on this exam carefully and answer only the questions I ask. Don't waste your time doing extra work, and don't skip any of the smaller questions within a problem. I can't grade what I can't see and I can't give partial credit for something in your head.

A bar is attached to a spring at pt O. The spring is constrained to deform purely in verical (x) direction. The bar has mass m and mass moment of inerita about its center of gravtiy of I^{G} $=1 / 12 m L^{2}$. The coordinate x denotes the absolute position of the roller and θ the angular position of the bar.

a) Determine the expression for potential energy U in terms of the generalized coordinates x and θ and determine the equilibrium positions of the system.
b) Write down an expression for the kinetic energy T in terms of the generalized coordinates x and θ and their time derivatives. From this expression, identify the elements $m i j$, where:

$$
T=\frac{1}{2} \sum_{i=1}^{2} \sum_{j=1}^{2} m_{i j} \dot{q}_{i} \dot{q}_{j}
$$

c) Determine the mass matrix $[M]$ and the stiffness matrix $[K]$ corresponding small oscillations about the equilibrium state.
a) $u=1 / 2 k x^{2}-m g(x+L / 2 \cos \theta)$

$$
\begin{align*}
& \partial u / \partial x=k x-n g, \quad \partial u / \partial 0=m g l / 2 \sin \theta \\
& \left.\left.\left.\partial u\right|^{\partial v}\right|_{\overrightarrow{q_{e}}}=\overrightarrow{0} \quad\left\{\begin{array}{l}
\partial u / \partial x \\
\partial u / \partial \theta
\end{array}\right\}=\overrightarrow{0} \quad 1\right) k x=m \phi, x_{c}=m \theta / c \tag{2}\\
& 2) m g / / 2 \sin 0=0,0_{c}=n \pi \\
& n=0,1,2,3 \ldots
\end{align*}
$$

$$
x_{c}=0, \text { and } \mathbb{Q}_{e}=n \pi, n=0,1,2,3, \ldots \infty
$$

\qquad
Test Problem 1 Additional Page
b)

$$
\begin{aligned}
& r_{0}=x \hat{\imath}, \vec{r}_{\theta / 0}=L / 2 \cos \theta y+L / 2 \sin \theta \hat{\jmath}, \\
& \vec{r}_{6}=\vec{r}_{0}+\vec{r}_{6 / 0}=(x+L / 2 \cos \theta) \hat{\imath}+L / 2 \sin \theta \hat{\jmath} \\
& \vec{H}_{0}=(\dot{x}-\dot{\theta} L / 2 \sin \theta) \eta+\dot{\theta} L / 2 \cos \theta \hat{\jmath} \\
& T=1 / 2 m \vec{V}_{0} \cdot \vec{V}_{0}+1 / 2 I_{6} \dot{\theta}^{2}=1 / 2 m\left(\dot{x}^{2}-\dot{x} \dot{\theta} L \sin \theta+\dot{\theta} L^{2} / 4\right)+1 / 2 m L^{2} \dot{\theta}^{2} \\
& m_{11}=m, \\
& m_{12}=m_{21}=-\frac{m L}{2} \sin \theta, \text { and } \\
& m_{22}=m L^{2} / 4
\end{aligned}
$$

c)

$$
\begin{aligned}
& {[m]=m\left[\begin{array}{ccc}
1 & 10 & -L / 2 \sin (n \pi) \\
-c_{2} \sin (n \pi) & L^{2} / 3
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & L^{2} / 3
\end{array}\right]} \\
& k_{11}=\left.\frac{\partial^{2} U}{\partial x}\right|_{\overrightarrow{q_{e}}}=k_{1}, \quad k_{12}=\left.\frac{\partial U}{\partial x \partial d U}\right|_{q_{20}} \\
& k_{22}=\left.\frac{\partial^{2} U}{\partial \theta^{2}}\right|_{q_{0}}=m q L L_{21} \cos (n \pi)=m q L / 2(-1)^{n} \\
& k=\left[\begin{array}{cc}
k & 0 \\
0 & m g L_{2}(-1)^{n}
\end{array}\right]=\left[\begin{array}{cc}
k & 0 \\
0 & (-1)^{n} m g L / 2
\end{array}\right]
\end{aligned}
$$

Test Problem 1 Additional Page

ME 563 - Fall 2020
Test Problem 2-20 points
A single degree of freedom systems has system parameters of $m=100 \mathrm{~kg}, k=25 \sqrt{2} \mathrm{~N} / \mathrm{m}$, and $c=50 \mathrm{~kg} / \mathrm{s}$, The system has initial condition $x_{0}=2 \mathrm{~cm}$, and $v_{0}=4 \mathrm{~cm} / \mathrm{s}$.
a) Determine the natural frequency of the system.
b) Determine the damping ratio of the system.
c) Determine the damped natural frequency of the system.
d) Indicate the correct plot of the response of system. On this label the initial conditions and the period of oscillations of the system, and the length of the period.

a)

b)

t (s)
d)
a)

$$
\begin{aligned}
& 1 / k_{c}=1 / k+1 / k \rightarrow k c=\frac{k^{2}}{k 2}=k / 2=\frac{25 \sqrt{2}}{2} \mathrm{~N} / m=17,67 \mathrm{~N} / \mathrm{m} \\
& w_{n}=\sqrt{k_{c} / m}=\sqrt{20 \sqrt{2} / 2 \cdot 100}=\sqrt{\sqrt{2} / 8}=0,4204 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

\qquad
Test Problem 2 Additional Page
b)

$$
\begin{aligned}
& 2 \xi w_{n}=c / m \\
& \xi=c / 2 m w_{n}=\frac{c}{2 m} \sqrt{k_{c o l m}}=c / 2 \sqrt{m k e w} \\
& \\
& =c / 2 \sqrt{m k / 2} \quad=\frac{50}{2 \sqrt{100(25 \sqrt{2} / 2})}=0,5946
\end{aligned}
$$

under damped
c) $W_{0}=W_{n} \sqrt{1-\xi^{2}}=0,424 \sqrt{1-0,5996^{2}}=0,3380 \mathrm{rad} / \mathrm{s}$
\qquad Test Problem 3-20 points

A 2-DOF system has the follow equations of motion.

$$
m\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left\{\begin{array}{l}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right\}+k\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

Determine the natural frequencies and mode shapes of the system.
Assume $\bar{x}=\bar{X} e^{\lambda t}=\vec{Z} e^{i \omega t}$

$$
[m] \ddot{\bar{x}}+[k] \vec{x}=\overrightarrow{0} \rightarrow\left(-w^{2}[m]+[k]\right) \Delta e^{i f v^{c}}=0
$$

Natural Frequencies

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-w^{2} m+k & -k \\
-k & -w^{2} m+k
\end{array}\right]\left\{\begin{array}{c}
\bar{X}_{1} \\
\bar{X}_{2}
\end{array}\right\}=\overrightarrow{0}} \\
& \left(-w^{2} m+k\right)^{2}-(k)^{2}=\left(w^{4} m^{2}-w^{2}(2 m k)+k^{2}-k^{2}\right)=0 \\
& w^{4}-2 m k w^{2}=w^{2}\left(w^{2} m^{2}-2 m k\right)=0 \\
& w^{2}=0 \quad w^{2} m^{2}-2 m k=0
\end{aligned}
$$

$$
w=0 \text { and } w=\sqrt{2} \sqrt{k / m} \sim \begin{aligned}
& \text { Rigid Body mode } \\
& w=0
\end{aligned}
$$

$$
w=0
$$

Modal Shapes

$$
\begin{aligned}
& \left(-w^{2} m+k\right) X_{1}-k \bar{X}_{2}=0 \rightarrow \frac{X_{2}}{X_{1}}=\frac{w^{2} m+k}{k}=-w^{2} m / k+1 \\
& \vec{I}=\left\{\begin{array}{c}
1 \\
w^{2} m / k+1
\end{array}\right\} \quad w=0, \vec{X}^{\prime}=\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}, w=\sqrt{2} \sqrt{k} m, \vec{X}^{2}=\left\{\begin{array}{c}
1 \\
-1
\end{array}\right\}_{7}
\end{aligned}
$$

ME 563 - Fall 2020
Name
Test Problem 3 Additional Page

ME 563 - Fall 2020
Name \qquad
Test Problem 4-20 points
Consider the system below, whose motion is described by the absolute coordinates shown. Use the method of influence coefficients to develop the flexibility matrix $[A]=[K]^{-1}$.

Numbering to Letters
A $\rightarrow 1$
$B \rightarrow 2$
$c->3$
$p \rightarrow 4$

Applier a unit load a "A"

$$
\begin{aligned}
& \leftrightarrow \sum F_{x}:-k a_{11}+f^{2}=0, \quad a_{11}=1 / k \\
& a_{12}=a_{13}=a_{14}=0
\end{aligned}
$$

by reciprocity $\quad a_{12}=a_{21}=0, \quad a_{13}=a_{51}=0, \quad a_{41}=a_{14}=0$

Apply unit load a "B"

Apply unit load "C"

$$
\begin{aligned}
& a_{34}=0 \quad a_{51}=0, a_{52}=0 \\
& a_{43}=a_{13}=a_{23}=0 \\
& \pm, z f x:-k a_{33}+f=0 \\
& a_{33}=\frac{1}{k}
\end{aligned}
$$

$$
\begin{aligned}
& 1 / \text { cew }=1 / k+1 / 2 k \\
& 1 / k_{\text {cav }}=1 / k(2 k / 2 k)+(1 / 2 k)(k / k) \\
& 1 / \text { cew }=\frac{3 k}{2 k^{2}} \quad k_{\text {ev }}=2 / 3 k
\end{aligned}
$$

$$
\pm \sum f_{x}:-2 / 3 k a_{44}+\vec{f}^{\prime}=0 \quad a_{44}=3 / 2 k
$$

In summarer,

$$
\begin{array}{lll}
a_{11}=1 / k, & a_{12}=0, & a_{13}=0, \\
a_{14}=0 \\
a_{21}=0, & a_{22}=1 / 2 k, & a_{23}=0, \\
a_{24}=1 / 2 k \\
a_{31}=0, & a_{32}=0, & a_{33}=1 / k, \\
a_{24}=0 \\
a_{41}=0, & a_{42}=1 / 2 k, & a_{93}=0, \\
a_{44}=3 / 2 k \\
{[a]=\left[\begin{array}{cccc}
1 / k & 0 & 0 & 0 \\
0 & 1 / 2 k & 0 & 1 / 2 k \\
0 & 0 & 1 / k & 0 \\
0 & 1 / 2 k & 0 & 3 / 2 k
\end{array}\right]}
\end{array}
$$

