ME563 - Fall 2014

Purdue University
West Lafayette, IN

Final Examination

- You have two hours (120 minutes) to complete the exam.
- You are allowed to use your ME 563 lecture book during the exam. No other materials may be accessed during the exam.
- Calculators may be used during the exam. However, no cell phones, tablets or computers may be used.
- Please do NOT write on the back of the exam papers.

Name \qquad

PUID

Problem 1 (25 pts)
Problem 2 (15 pts)
Problem 3 (15 pts)
Problem 4 (15 pts) \qquad
Problem 5 (15 pts) \qquad
Problem 6 (15 pts) \qquad

TOTAL

The three-DOF system shown above has the following natural frequencies and massnormalized modal vectors:

$$
\begin{aligned}
& \omega_{1,2,3}=1,2,5 \mathrm{rad} / \mathrm{sec} \\
& \hat{\vec{X}}^{(1)}=\left\{\begin{array}{l}
1 \\
2 \\
4
\end{array}\right\} \quad \hat{\vec{X}}^{(2)}=\left\{\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right\} \quad \hat{\vec{X}}^{(3)}=\left\{\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right\}
\end{aligned}
$$

a) If the particular solution of the EOMs for this system is written as $\vec{x}_{P}(t)=\vec{A} \sin \Omega t$, determine \vec{A} as a function of Ω.
b) Make sketches of $\left|A_{j}\right|$ vs. Ω on the plot axes provided below. Clearly indicate all resonances and anti-resonances in your sketches.

ME 563 - Fall 2014
Name
Final Examination
Problem 1 (cont.)

ME 563 - Fall 2014
Name
Final Examination
Problem 1 (cont.)

Consider the function $f(t)=3|\sin 4 t|$ shown below. Suppose that the Fourier series for this function is written as: $f(t)=f_{0}+\sum_{k=1}^{\infty}\left[f_{c k} \cos k \Omega t+f_{s k} \sin k \Omega t\right]$.

a) Determine the fundamental frequency Ω for this periodic function.
b) Set up the integral expressions for the Fourier coefficients $f_{0}, f_{c k}$ and $f_{s k}$. Do NOT evaluate these integrals.
c) Which, if any, of the Fourier coefficients written down above in b) are zero?

ME 563 - Fall 2014
Name
Final Examination
Problem 2 (cont.)

An undamped single-DOF system governed by the following EOM:

$$
m \ddot{x}+k x=f(t)
$$

has an excitation of $f(t)$ shown below. The system is given the initial conditions of: $x(0)=\dot{x}(0)=0$. Set up the convolution integral solution for the response of this system. Clearly indicate the solutions that are valid for the time ranges of:

- $0 \leq t \leq T$
- $T \leq t \leq 2 T$
- $t \geq 2 T$

Do NOT evaluate the integrals above.

ME 563 - Fall 2014
Name
Final Examination
Problem 3 (cont.)

Problem 4-15 pts
Forcing $f(t)$ acts on an undamped single-DOF system, with $f(t)$ as shown below. Use the following parameters: $m=100 \mathrm{~kg}, k=10,000 \mathrm{~N}, f_{0}=120 \mathrm{~N}$ and $T=0.2 \mathrm{sec}$.
a) Treating $\mathrm{f}(\mathrm{t})$ as a SHOCK loading, determine upper AND lower bounds on the value of $x_{\text {max }}$.
b) Treating $\mathrm{f}(\mathrm{t})$ as an IMPACT loading, determine an upper bound on the value of $x_{\text {max }}$.
c) Does the system serve as an effective shock isolator?

A five-DOF system has the following mass and flexibility matrices:

$$
[M]=\left[\begin{array}{ccccc}
10 & & & & \\
& 10 & & & \\
& & 10 & & \\
& & & 10 & \\
& & & & 10
\end{array}\right] k g \quad[A]=\left[\begin{array}{ccccc}
2 & 2 & 2 & 2 & 2 \\
2 & 4 & 4 & 4 & 4 \\
2 & 4 & 6 & 6 & 6 \\
2 & 4 & 6 & 8 & 8 \\
2 & 4 & 6 & 8 & 9
\end{array}\right] \times 10^{-4} \frac{m}{N}
$$

Determine an upper bound and a lower bound on the lowest natural frequency for the system. Do NOT perform any matrix inversions in your analysis.

A rod of length L, Young's modulus E, cross-sectional area A and mass density ρ is attached to a fixed wall at its left end $(x=0)$. A rigid block of mass m and a spring of stiffness k are attached at the right end $(\mathrm{x}=\mathrm{L})$. A second rigid block, also of mass m , is attached to the rod at midlength $(\mathrm{x}=\mathrm{L} / 2)$. Use $m=\rho A L$ and $k L / E A=1$.
a) Write down the Rayleigh quotient for this rod system.
b) Choose an admissible trial function $\mathrm{v}(\mathrm{x})$ and calculate an upper bound for the lowest natural frequency for the rod system. Feel free to use any integration results from lecture examples in your work here.

$$
x=0 \quad x=L / 2 \quad x=L
$$

ME 563 - Fall 2014
Name
Final Examination
Problem 6 (cont)

