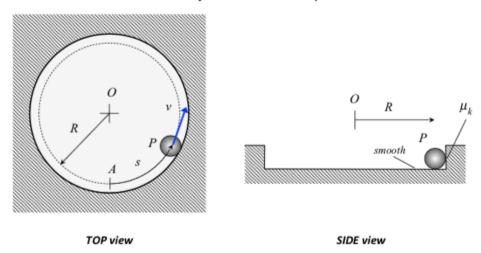
ME562 – Spring 2020 Purdue University West Lafayette, IN

Homework Set No. 4

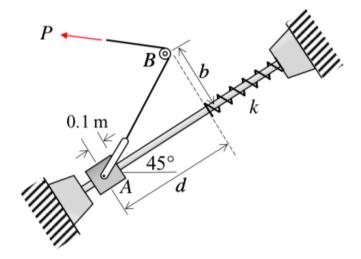
Due date: Thursday, February 27, 11:59pm


•	Please include this cover sheet as the first page of your homework
	submission

•	Submit	homework	file on	Gradesco	oe.
•	Subillit	HOHIEWOLK		Grauesc	υı

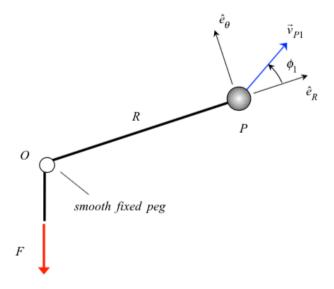
Name		
PUID		
	Double of A.A.	
	Problem 4.1	
	Problem 4.2	-
	Problem 4.3	
	TOTAL	

Problem 4.1 - 10 points


motion of P in the HORIZONTAL plane

Particle P (having a mass of m) is constrained to move around the wall of a horizontal circular cavity, with the path of P in the cavity being a circle of radius R. The horizontal surface on which P moves is smooth, with the wall of the cavity along which P moves is rough having a coefficient of kinetic friction between the wall and P of μ_k . When at position A, P is known to have a speed of v_A .

- a) Show that the speed of P as it moves around the cavity is governed by the differential equation: $\frac{dv}{ds} = -\mu_k \frac{v}{R}$, where s is the distance traveled by P.
- b) Using the result of (a) above, determine the speed v of P as a function of s as it moves around the cavity wall.
- c) How far does P travel before it comes to rest?


Problem 4.2 – 10 points

A constant force P = 50 N acts at the free end of the cable as block A (having mass m = 30 kg) is pulled up the smooth rod. The system starts out from rest.

Determine the stiffness of k of the spring corresponding to a maximum spring compression of $\Delta_{max} = 0.03m$. Use b = 0.75 m and d = 1.5 m.

Problem 4.3 – 10 points

HORIZONTAL PLANE

A rope is attached to particle P (having a mass of m = 6 kg) with the rope being pulled over a fixed, smooth peg by a constant force F = 60 N applied at the other end of the rope. At the initial state, P has a speed of $v_{P1} = 20 \, m/s$ with $\phi_1 = 30^\circ$, and is at a distance $R = R_1 = 3m$ from the peg. The particle moves on a smooth horizontal plane.

Determine \dot{R} when $R = R_2 = 4m$.