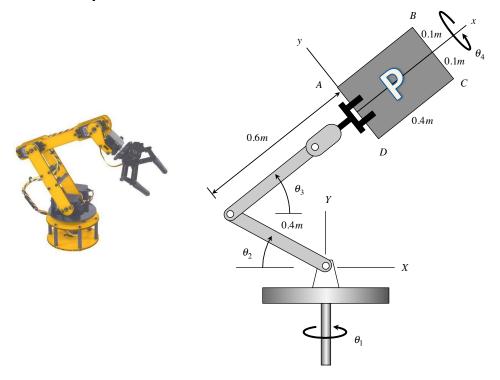
ME562 – Spring 2020 Purdue University West Lafayette, IN


Homework Set No. 2

Assignment date: Friday, January 31 Due date: Thursday, February 6, 11:59pm

- Please include this cover sheet as the first page of your homework submission.
- Submit homework file on Gradescope.

Name		
PUID		
	Drahlara 0.4	
	Problem 2.1	
	Problem 2.2	
	Problem 2.3	
	Problem 2.5	
	TOTAL	

Problem 2.1 - 30 points

Consider the robotic arm shown above holding a rectangular sign ABCD in its end effector. Let the XYZ axes be fixed in space, and the xyz axes attached to the sign. When $\theta_1 = \theta_3 = \theta_4 = 0$, the xyz and XYZ axes are aligned. With $\theta_2 = 90^\circ$ held fixed, consider the three rotations through which the robotic arms is taken:

 $\theta_1: 0 \rightarrow 180^{\circ}$ $\theta_3: 0 \rightarrow 90^\circ$ $\theta_4: 0 \rightarrow -90^{\circ}$

for two different orders of rotation:

- a) θ_1 followed by θ_3 followed by θ_4
- b) θ_4 followed by θ_3 followed by θ_1

For each of the two rotation orders a) and b) above, do the following:

- i. Determine the final space-fixed coordinates of point B on the sign.
- ii. Make a sketch of the final orientation of the sign.
- iii. Determine the Euler axis of rotation and the Euler angle of rotation for the sign.

Problem 2.2 - 20 points

Reconsider the robotic arm described in Problem 2.1. Here the arm goes through the following rotations:

 $\theta_3: 0 \rightarrow 50^{\circ}$ $\theta_4: 0 \rightarrow 75^{\circ}$

while $\theta_1 = 0$ and $\theta_2 = 90^{\circ}$ are held fixed. As a result of these rotation:

- a) Determine the distance through which point A on the sign moves.
- b) Determine the distance between the initial and final positions of point A on the sign.
- c) Determine the direction angles for edge AB of the sign. Verify that these three direction angles are consistent with the usual constraint on direction angles in 3-D space.

Problem 2.3 – 10 points

Reconsider the robotic arm described in Problem 2.1 where here the lower joint is locked at $\theta_2 = 90^\circ$. When $\theta_3 = 30^\circ$ and $\theta_4 = 60^\circ$ it is known that $\dot{\theta}_3 = 2~rad~/sec$ and $\dot{\theta}_4 = -3~rad~/sec$. At this position, determine the angular velocity vector of the sign and the velocity vector of point B on the sign. Express your answers in terms of both the space-fixed and body-fixed coordinates.