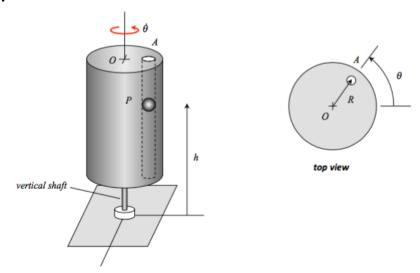
ME562 – Spring 2019 Purdue University West Lafayette, IN


Homework Set No. 1

Assignment date: Thursday, January 16 Due date: Thursday, January 23, 11:59pm

- Please include this cover sheet as the first page of your homework submission.
- Submit homework file on Gradescope.

Name		
PUID		
	Problem 1.1	
	Problem 1.2	
	Problem 1.3	
	TOTAL	. <u> </u>

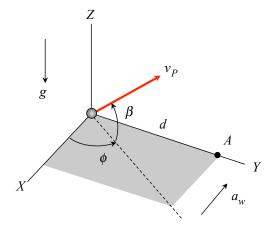
Problem 1.1

A cylinder rotates about a vertical axis with a rate of $\dot{\theta}$, where $\dot{\theta}(0) = 0$ and $\ddot{\theta} = constant$. At time t = 0, particle P is dropped from rest into a smooth, vertical tube that is cut into the cylinder, with $h = h_0$. At the instant when $h = h_0/2$:

- a) Determine the velocity and acceleration of P as vectors in terms of cylindrical coordinates.
- b) Determine the speed and rate of change of speed of P.
- c) Determine the radius of curvature of the path of P.

Use the following: $\ddot{\theta} = 2rad / s^2$, $h_0 = 10 ft$ and R = 0.5 ft.

Problem 1.2


A particle P moves in 3-D space with the following Cartesian coordinates (in meters):

$$x = \frac{t^3}{3}$$
$$y = -\cos 2\pi t$$
$$z = x^2 y$$

where t is in seconds. At time $t = 1 \sec :$

- a) Determine the velocity and acceleration of P. Write your answers as vectors with Cartesian components.
- d) Determine the speed and rate of change of speed of P.
- e) Determine the radius of curvature of the path of P.

Problem 1.3

A projectile is launched with a speed of v_P at the origin of a set of XYZ axes in the direction shown. After launching, the projectile experiences a downward acceleration of g, as well as an acceleration in the negative X-direction of $a_w = 0.4g$. The target for the projectile is point A on the Y-axis at a distance of d from the launching point.

- a) Determine the launch angle β and the initial velocity v_P required for the projectile to land at A.
- b) Determine the velocity vector (in Cartesian components), the rate of change of speed and the radius of curvature of the projectile immediately before it lands at A.

Use the following: $\phi = 53.13^{\circ}$ and d = 2000 ft.