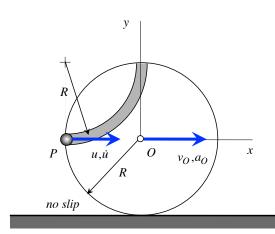

Given: The disk shown below rolls without slipping on a horizontal surface. At the instant shown, the center O is moving to the right with a speed of $v_0 = 5$ m/s with this speed decreasing at a rate of 2 m/s². Also for this instant, the particle P is at a position of $x_p = 0.2$ m with $\dot{x}_p = 2$ m/s = constant, where x_p is measured relative to the xyz coordinate system that is attached to the disk.

Find: Determine:

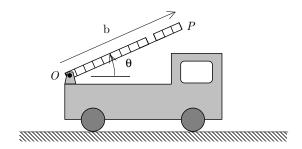
- (a) The velocity of particle P; and
- (b) The acceleration of particle P.

Use the following parameters in your analysis: h = 0.2 m and r = 0.6 m.



Given: The disk of radius R rolls without slipping on a horizontal surface with the speed and acceleration of the disk center O given by v_O and a_O , respectively. A particle P slides within a semi-circular slot cut in the disk with P moving with a speed of u relative to the disk and a rate of change of speed of \dot{u} relative to the disk. The radius of the slot is R.

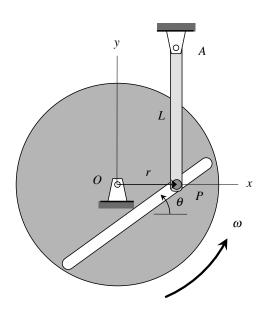
Find: Determine:


- (a) The velocity of P when P is on the perimeter of the disk and is immediate to the left of O; and
- (b) The acceleration of P at the same position.

Use the following parameters in your analysis: $v_O = 3 \text{ m/s}$, $a_O = 5 \text{ m/s}^2$, u = 2 m/s $\dot{u} = 7 \text{ m/s}^2$, and R = 0.75 m.

Given: The fire truck moves forward at a constant speed of 50 ft/s. The ladder is being raised at a constant rate of $\dot{\theta} = 0.3$ rad/s. In addition, the ladder is being extended at a constant rate of $\dot{b} = 2$ ft/s.

Find: The acceleration of end P of the ladder when b=25 ft and $\theta=30^{\circ}$.

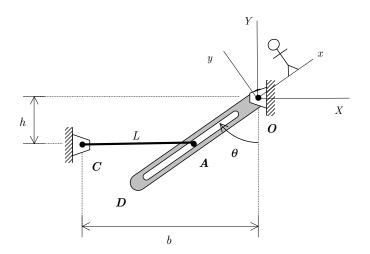


Given: The disk shown below is rotating counterclockwise at a constant rate of ω . Link AP is vertical. Pin P slides within a straight slot cut into the disk. Let the xyz axes be attached to the disk. The slot is oriented at an angle of θ as measured from the x-axis. At the instant shown, P is on the x-axis, and the x-axis is horizontal.

Find: Determine:

- (a) The angular velocity of link AP at this instant; and
- (b) The angular acceleration of link AP at this instant.

Use the following parameters in your analysis: $\omega = 8 \text{ rad/s}$, r = 0.2 m, L = 0.3 m and $\theta = 36.87^{\circ}$.

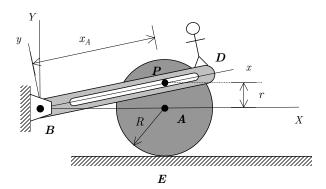


Given: Link OD is rotating clockwise at a constant rate of $\dot{\theta} = 2 \text{ rad/s}$. When $\theta = 45^{\circ}$, link CA is horizontal.

Find: Determine:

- (a) The velocity of A when $\theta = 45^{\circ}$; and
- (b) The acceleration of A at the same position

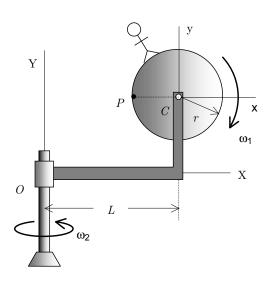
Use the following parameters in your analysis: L = 0.225 m, h = 0.225 m and b = 0.45 m.



Given: The disk rolls without slipping to the right with a constant angular speed of ω_d . At the instant shown, pin P is directly above the center A of the disk.

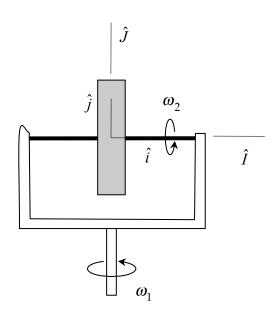
Find: Determine:

- (a) The angular acceleration of the disk; and
- (b) The acceleration of P as seen by an observer on arm BD.


Use the following parameters in your analysis: $\omega_d = 20$ rad/s (clockwise), $x_A = 0.48$ m, r = 0.14 m and R = 0.2 m.

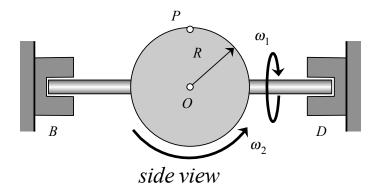
Given: A disk rotates with a constant rate of $\omega_1 = 20$ rad/s with respect to the arm OC as the arm OC rotates about a fixed vertical axis with a constant rate of $\omega_2 = 5$ rad/s. The observer and the xyz axes are attached to the disk, while the XYZ axes are fixed. At this instant, the XYZ and xyz axes are aligned.

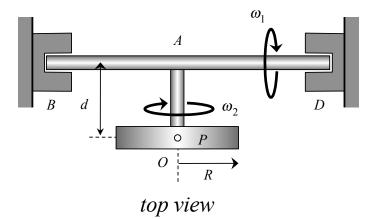
Find: Determine:


- (a) The angular velocity of the observer at the instant shown; and
- (b) The angular acceleration of the observer at the instant shown.

Given: The disk of a gyroscope rotates about its own axis at a constant rate of $\omega_2 = 600$ rev/min. The gimbal support is rotating at a constant rate of $\omega_1 = 10$ rad/s about a fixed vertical axis. The observer and the xyz axes are attached to the disk. The XYZ axes are fixed in space.

Find: Determine:

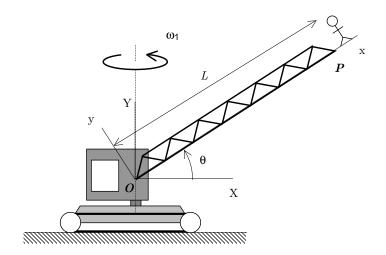

- (a) The angular velocity of the observer at the instant shown; and
- (b) The angular acceleration of the observer at the instant shown.



Given: Shaft BD rotates about a fixed axis with a constant rate of ω_1 . Shaft OA is rigidly attached to shaft BD with OA being perpendicular to BD. A disk rotates about shaft OA with a constant rate of ω_2 relative to OA.

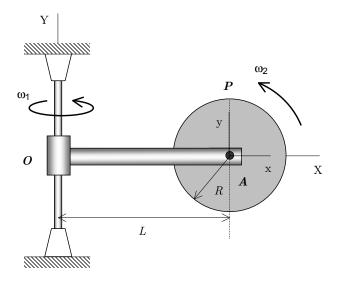
Find: The acceleration of point P on the edge of the disk for the position shown.

Use the following parameters in your analysis: $\omega_1 = 5 \text{ rad/s}$, $\omega_2 = 8 \text{ rad/s}$, R = 6 in and d = 4 in.

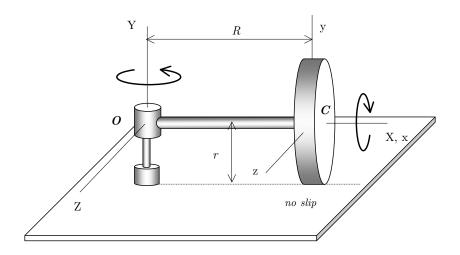


Given: $\omega_1 = 0.30 \text{ rad/s} = constant$, $\dot{\theta} = 0.5 \text{ rad/s} = constant$ and L = 12 m.

Find: When $\theta = 30^{\circ}$, determine:

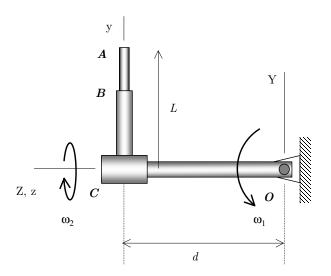

- (a) The angular velocity of boom OP;
- (b) The angular acceleration of boom OP;
- (c) The velocity of end P of the boom; and
- (d) The acceleration of end P of the boom.

Given: The rotation rates ω_1 and ω_2 are constant.


$\textbf{Find:} \ \, \text{Determine:} \\$

- (a) The velocity of point P on the disk at the instant when P is directly above the center A of the disk; and
- (b) The acceleration of point P at the same instant.

Given: Arm OC rotates about the fixed Y-axis at a constant rate Ω . The disk at C, having a radius of R, is able to rotate about arm OC and rolls without slipping on a fixed horizontal surface. Let the xyz axes be attached to the disk.


Find: Determine the angular acceleration of the disk.

Given: $\dot{L}=0.06~\mathrm{m/s}=constant$, $\omega_1=1.2~\mathrm{rad/s}=constant$ and $\omega_2=1.5~\mathrm{rad/s}=constant$. At the position shown, AC is aligned with the fixed Y-axis, $L=0.12~\mathrm{m}$, and $d=0.02~\mathrm{m}$.

Find: Determine:

- (a) The velocity of end A of the telescoping rod AC; and
- (b) The acceleration of the same point.

