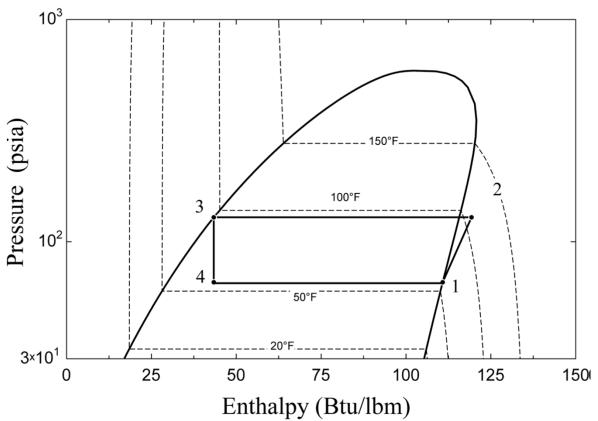

ME 418 Lecture 13 - Vapor Compression Equipment - I In-Class Notes for Fall 2024

- Review of vapor compression systems
- Refrigerant
- Compressors

Vapor Compression Systems



Carnot (idealized) refrigeration system COP

$$COP_{Carnot} = \frac{\dot{Q}_{L}}{\dot{W}_{ideal}} = \frac{T_{L}}{T_{H} - T_{L}}$$

Actual Vapor Compression Cycle

Process 1-> 2: Adiabatic compression

Process 2-> 3: Condensation at constant pressure

Process 3-> 4: Adiabatic and isenthalpic throttling

Process 4-> 1: Evaporation at constant pressure

Energy Balances on Components

Compressor work

$$\dot{W}_c = \dot{m}(h_2 - h_1)$$

Isentropic work

$$\dot{W}_s = \dot{m}(h_{2s} - h_1)$$

Isentropic efficiency

$$\eta_s = \frac{W_s}{\dot{W}_c}$$

Condenser heat transfer

$$\dot{Q}_c = \dot{m}(h_2 - h_3)$$

Evaporator heat transfer

$$\dot{Q}_e = \dot{m}(h_1 - h_4)$$

Expansion process

$$h_3 = h_4$$

Refrigeration system

$$\dot{Q}_e + \dot{W}_c = \dot{Q}_c$$

System COP

COP =
$$\frac{\dot{Q}_{e}}{\dot{W}_{c}} = \frac{\dot{m}(h_{1} - h_{4})}{\dot{m}(h_{2} - h_{1})}$$

Vapor-Compression Cycle Example: A vapor compressor cycle uses R-134a as the working fluid and operates between a cold fluid at a temperature of 55 F and a warm fluid at a temperature of 95 F. Determine the cooling produced, work required, and COP for

- a) a compressor efficiency of 100 % and no temperature difference between the source or sink fluid and the refrigerants in the heat exchangers,
- b) for a compressor with a 70 % efficiency,
- c) a 10 F temperature difference for heat transfer in both the condenser and the evaporator,
- d) all of the effects taken together
- e) Determine the COP of a Carnot cycle for these temperatures.

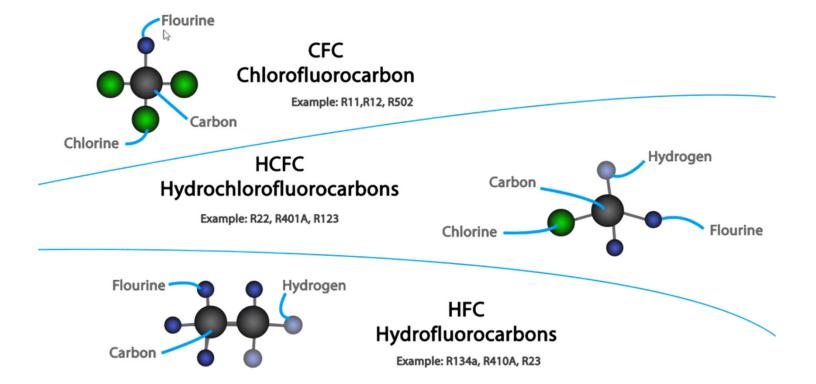
Refrigerants

1st Generation 'Whatever worked' 2nd Generation 'Safe & stable' 3rd Generation 'Ozone protection' 4th Generation 'Global warming'

1830 - 1930

1930 - 1990

1990 - 2010

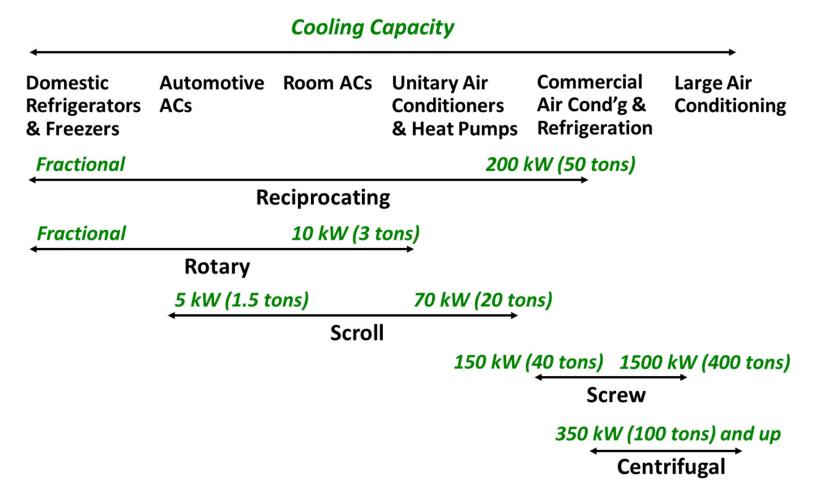

2010 - present

- Industrial applications
- Toxic, flammable
- Examples:
 - ■NH3
 - **■**CO2
 - Hydrocarbons
 - ■H2O
 - **■**SO2

- Miracle substances
- Stable and safe
- NH3
- CFCs and HCFCs
 - ■R11
 - ■R12
 - ■R22
 - ■R502

- Preserved 2nd gen. features
- Safe and stable
- NH3
- HCFCs and HFCs
 - ■R134a
 - ■R410a
 - Blends

- Fewer choices
- Safety challenges
- NH3
- Natural refrig.
 - ■CO2
 - Hydrocarbon
- Low GWP HFCs HFOs:
 - ■R1233zd



Refrigerant	Chemical	NBP	Glide	СТ	GWP	Safety	
Number	Formula	°C	K	°C		Group	
R-134a	CH ₂ F.CF ₃	-26	0.0	101	1300	A1	
R-413A	R-134a/218/600a	-35	6.9	101	1770	A1/A2	
R-404A	R-143a/125/134a	-47	0.7	73	3260	A1/A1	
R-507	R-143a/125	-47	0.0	71	3300	A1	
R-407C	R-32/125/134a	-44	7.4	87	1520	A1/A1	
R-417A	R-125/134a/600	-43	5.6	90	1950	A1/A1	
R-410A	R-32/125	-51	0.2	72	1720	A1/A1	
R-508	R-23/116	-86	0.0	13	11860	A1	

Refrigerant	Chemical	NBP	Glide	СТ	GWP	Safety	
Number	Formula	°C	K	°C		Group	
R-717	NH ₃	-33	0.0	133	0	B2	
R-600a	CH.(CH ₃) ₃	-12	0.0	135	3	А3	
R-290	C ₃ H ₈	-42	0.0	97	3	А3	
R-1270	C ₃ H ₆	-48	0.0	92	3	А3	
R-744	CO ₂	-57	0.0	31	1	A1	

Compressors

Range of capacity applications for compressor types

Compressor Configurations

Hermetic:

- Welded steel shell houses both compressor and motor
- Usually smaller sizes; high manufacturing cost of larger sizes

Semi-hermetic:

- Common, but bolted, housing for compressor & motor
- Intermediate capacities
- Often multiple cylinders for increased capacity

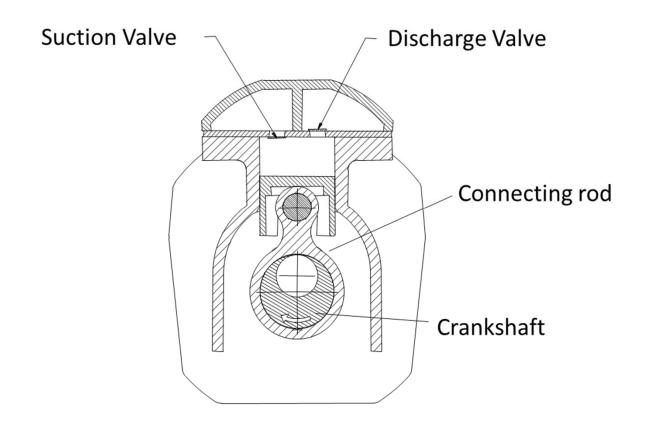
Open Drive:

- Motor external to shell
- Largest capacities
- Shaft seal necessary

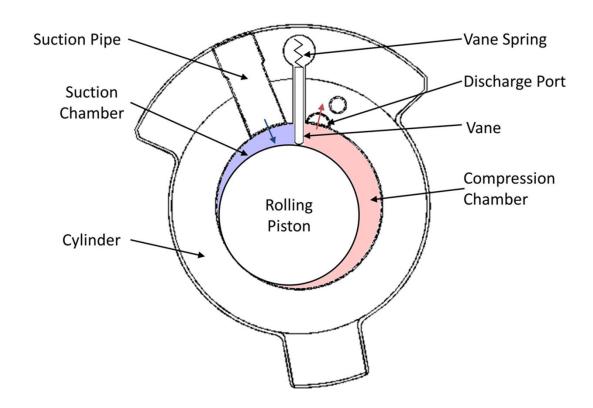
Hermetic

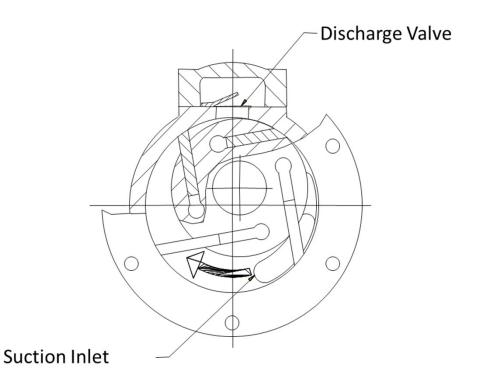
Semi-hermetic

Open-type



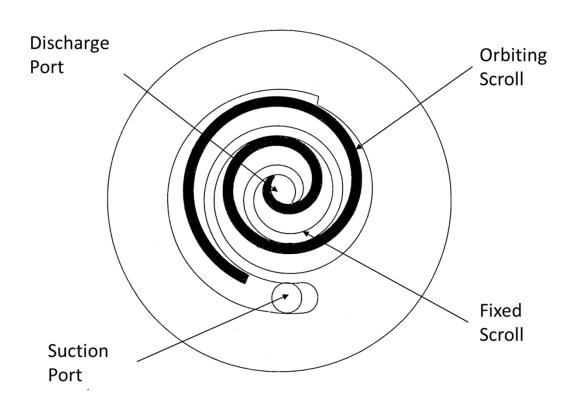
Reciprocating Compressor


- Widely used; simple to make and low cost
- Parallel compressors are low-cost way to obtain multiple capacities and improved part load efficiency

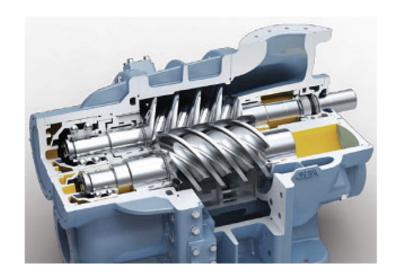

Rotary Compressor

- Two types: stationary vane (also called rolling piston) and sliding vane compressor
- Smaller size for given capacity then reciprocating
- Better reliability and operation over larger speed range

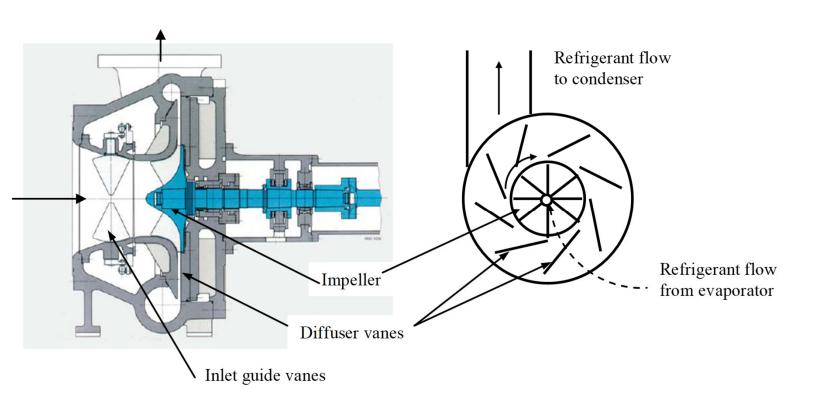
Rolling piston



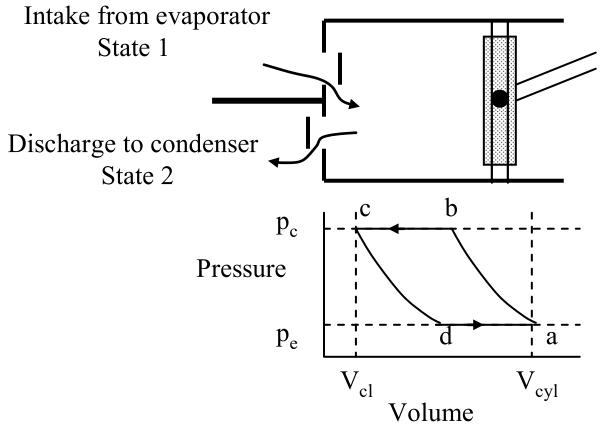
Sliding vane


Scroll Compressor

- Relatively complicated orbiting mechanism
- No valves, better reliability
- Ideal for variable speed and capacity
- Better dynamic balance, more uniform shaft torque, less pressure oscillations, etc


Screw Compressor

- Better efficiency
- Works well with speed and capacity control
- Commonly used in the 30-100 ton range



Centrifugal Compressor

- High rotational speed and refrigerant flow
- Economically viable for sizes > 100 tons
- Capacity control through variable speed or inlet guide vane angle control

Performance Analysis of Reciprocating Compressor

Refrigerant mass flow rate

$$\dot{m} = \dot{N} \frac{\left(V_a - V_d\right)}{v_s}$$

Displacement volume

$$V_{disp} = (V_a - V_c)$$

Clearance volume fraction

$$C = \frac{V_c}{\left(V_a - V_c\right)}$$

Volumetric efficiency

$$\eta_{V} = \frac{\text{Volume flow rate}}{\text{Displacement rate}}$$

$$\eta_{V} = \frac{\dot{N}(V_{a} - V_{d})}{\dot{N}(V_{a} - V_{c})} = \frac{(V_{a} - V_{d})}{(V_{a} - V_{c})}$$

$$\eta_{V,C} = 1 + C - C\left(\frac{V_{d}}{V_{c}}\right)$$

Assuming compression process is polytropic, i.e.,

$$p \ v^n = constant$$

$$p_a \ v_a^n = p_b \ v_b^n \ and \ p_c \ v_c^n = p_d \ v_d^n$$

Then volume ratio is

$$\left(\frac{V_d}{V_c}\right) = \left(\frac{v_d}{v_c}\right) = \left(\frac{p_c}{p_d}\right)^{1/n} = \left(\frac{p_c}{p_e}\right)^{1/n}$$

Volumetric efficiency can be rewritten as

$$\eta_{V,C} = 1 + C - C \left(\frac{p_c}{p_e}\right)^{1/n}$$

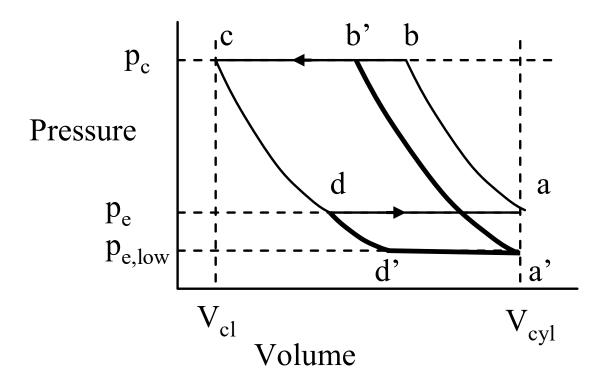
Refrigerant mass flow rate

$$\dot{m} = \eta_{V} \frac{\dot{N} \ V_{disp}}{v_{s}}$$

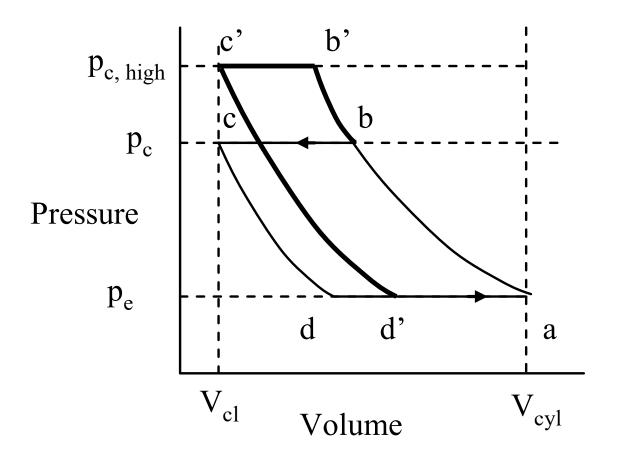
$$\dot{m} = \left[1 + C - C \left(\frac{p_{c}}{p_{e}} \right)^{1/n} \right] \frac{\dot{N} \ V_{disp}}{v_{s}}$$

Compressor power is

$$\dot{W}_{c} = \dot{m} \begin{bmatrix} b \\ \int p dv - \int d p dv \end{bmatrix}$$


$$\dot{W}_{c} = \dot{N} \left(\frac{n}{n-1} \right) \eta_{V} p_{e} V_{disp} \left[\left(\frac{p_{c}}{p_{e}} \right)^{\frac{n}{n-1}} - 1 \right]$$

Compressor efficiency is defined as


$$\eta_{c} = \frac{\dot{W}_{c}}{\dot{W}_{elec}}$$

Compressor Example: Determine the clearance volumetric efficiency, mass flow rate, reversible polytropic power requirement (kW), cooling capacity (tons), and coefficient of performance for a refrigeration system with a reciprocating compressor that has a displacement volume of 0.02 ft3, a clearance volume fraction of 0.05, a rotational speed of 1740 rpm. The refrigerant is R-22, and leaves the evaporator at a saturation pressure corresponding to 25 F with 5 F superheat and leaves the condenser as saturated liquid at 120 F. The polytropic exponent for the process is 1.2.

Pressure-Volume Diagram for Different Evaporator Pressure

Pressure-Volume Diagram for Different Condenser Pressure

Compressor Pressure Effect Example: Determine and plot the effects of condenser and evaporator pressure on the clearance volumetric efficiency, mass flow rate, capacity and power for the ideal system of the previous example.

Performance Correlations for Positive Displacement Compressors (ANSI/ARI Standard 540)

$$\begin{aligned} F &= c_1 + c_2 T_s + c_3 T_d + c_4 T_s^2 + c_5 T_s T_d + \\ c_6 T_d^2 + c_7 T_s^3 + c_8 T_d T_s^2 + c_9 T_s T_d^2 + c_{10} T_d^3 \end{aligned}$$

Isentropic efficiency as a function of suction and discharge dewpoint temperatures

Discharge dewpoint	Suction dewpoint temperature T _s (F)								
	-10	0	10	20	30	40	45	50	55
150						0.585	0.610	0.632	0.651
140					0.570	0.625	0.648	0.666	0.681
130				0.552	0.613	0.662	0.680	0.695	0.704
120			0.531	0.597	0.652	0.692	0.705	0.714	0.716
110		0.507	0.577	0.636	0.682	0.711	0.718	0.718	0.712
100	0.481	0.554	0.616	0.666	0.700	0.714	0.711	0.701	0.683
90	0.527	0.591	0.643	0.680	0.698	0.692	0.677	0.654	0.620
80	0.563	0.614	0.653	0.674	0.672	0.640	0.610	0.569	0.515