SPUR GEAR BENDING Based on ANSI/AGMA 2001-D04 (U.S. customary units)

 $_{0.99}(S_t)_{10}$ 7 Tables 14–3, 14–4

Bending factor of safety $S_F = \frac{S_t Y_N / (K_T K_R)}{\sigma}$ Eq. (14–41)

Remember to compare S_F with S_H^2 when deciding whether bending or wear is the threat to function. For crowned gears compare S_F with S_H^3 .

Table of Overload Factors, K_o

Driven Machine							
Power source	Uniform	Moderate shock	Heavy shock				
Uniform	1.00	1.25	1.75				
Light shock	1.25	1.50	2.00				
Medium shock	1.50	1.75	2.25				

SPUR GEAR WEAR Based on ANSI/AGMA 2001-D04 (U.S. customary units)

Wear factor of safety $S_H = \frac{S_c Z_N C_H / (K_T K_R)}{\sigma_c}$ Eq. (14–42)

Remember to compare S_F with S_H^2 when deciding whether bending or wear is the threat to function. For crowned gears compare S_F with S_H^3 .

Table of Overload Factors, K_o

Driven Machine							
Power source	Uniform	Moderate shock	Heavy shock				
Uniform	1.00	1.25	1.75				
Light shock	1.25	1.50	2.00				
Medium shock	1.50	1.75	2.25				

EQUATIONS (continued)

Tensile forces in bolts

$$P = \frac{P_{total}}{N} = P_b + P_m$$

$$F_b = F_i + P_b$$

$$F_i = 0.75 F_p = 0.75 A_t S_p$$
 (re-used fasteners)

$$F_i = 0.75 \, F_p = 0.9 \, A_t \, S_p$$
 (permanent fasteners)

$$T = K F_i d$$

Joint stiffness constant

$$C = \frac{k_b}{k_m + k_b}$$

Member stiffness (when the entire joint is made of the same material)

$$\frac{k_m}{E\,d} = A\exp\left(B\,d/l\right)$$

Table 8–8 Stiffness Parameters of Various Member Materials[†]

	Poisson	Elastic Modulus			
Material Used	Ratio	GPa	Mpsi	\boldsymbol{A}	В
Steel	0.291	207	30.0	0.787 15	0.628 73
Aluminum	0.334	71	10.3	0.796 70	0.638 16
Copper	0.326	119	17.3	0.795 68	0.635 53
Gray cast iron	0.211	100	14.5	0.778 71	0.616 16
General expression				0.789 52	0.629 14

Static failure

$$n_p = \frac{S_p}{\sigma_b} = \frac{S_p A_t}{CP + F_i}$$

$$n_L = \frac{S_p A_t - F_i}{CP}$$

$$n_o = \frac{F_i}{P(1-C)}$$

Fatigue failure

$$\begin{split} \sigma_a &= \frac{C(P_{max} - P_{min})}{2A_t} \\ \sigma_m &= \frac{C(P_{max} + P_{min})}{2A_t} + \frac{F_i}{A_t} = \frac{C(P_{max} + P_{min})}{2A_t} + \sigma_i \\ n_f &= \frac{S_e(S_{ut} - \sigma_i)}{S_{ut}\sigma_a + S_e(\sigma_m - \sigma_i)} \end{split}$$

Table 8-7 Suggested Procedure for Finding Fastener Stiffness

Given fastener diameter d and pitch p in mm or number of threads per inch

Washer thickness: t from Table A-32 or A-33

Nut thickness [Figure (a) only]: H from Table A-31

Grip length:

For Figure (a): l =thickness of all material squeezed between face of bolt and face of nut

For Figure (b):
$$l = \begin{cases} h + t_2/2, & t_2 < d \\ h + d/2, & t_2 \ge d \end{cases}$$

Fastener length (round up using Table A-17*):

For Figure (a): L > l + H

For Figure (b): L > h + 1.5d

Threaded length L_T : Inch series:

$$L_T = \begin{cases} 2d + \frac{1}{4} \text{ in,} & L \le 6 \text{ in} \\ 2d + \frac{1}{2} \text{ in,} & L > 6 \text{ in} \end{cases}$$

Metric series:

$$L_T = \begin{cases} 2d + 6 \text{ mm}, & L \le 125 \text{ mm}, d \le 48 \text{ mm} \\ 2d + 12 \text{ mm}, & 125 < L \le 200 \text{ mm} \\ 2d + 25 \text{ mm}, & L > 200 \text{ mm} \end{cases}$$

Length of unthreaded portion in grip: $l_d = L - L_T$ Length of threaded portion in grip: $l_t = l - l_d$ Area of unthreaded portion: $A_d = \pi d^2/4$

Area of threaded portion: A_t from Table 8–1 or 8–2

Fastener stiffness: $k_b = \frac{A_d A_t E}{A_d l_t + A_t l_d}$