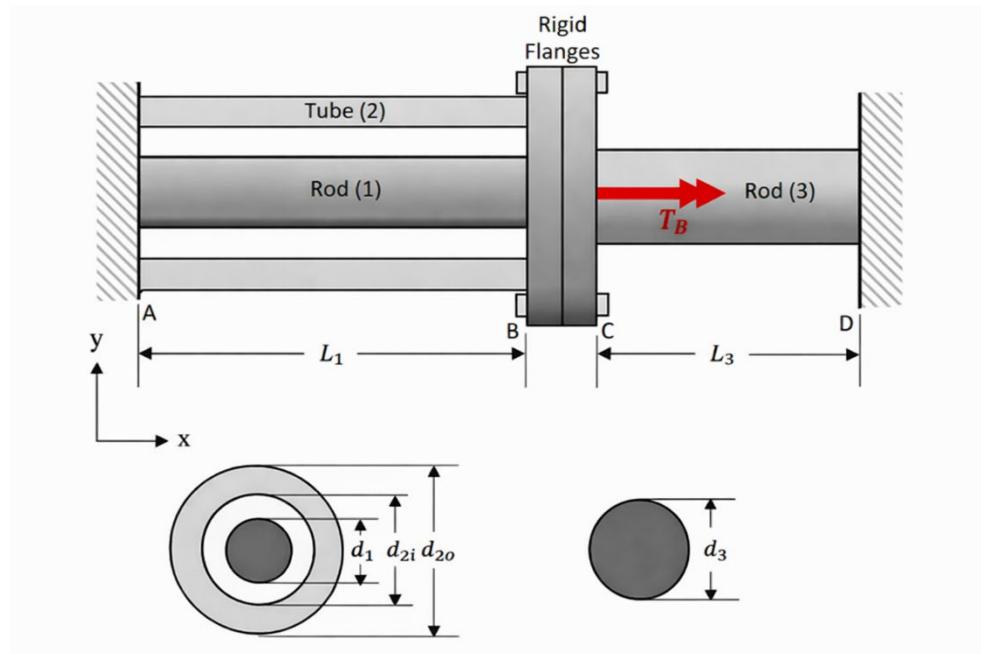


Problem 1 (10 points):

A solid prismatic bar AB of uniform circular cross section (diameter d) is loaded by a distributed torque (see figure). The intensity of the distributed torque, that is, the torque per unit distance, is denoted $t(x)$ (Nm/m) and varies linearly from a maximum value t_A at end A to zero at end B. Also, the length of the bar is L and the shear modulus of elasticity of the material is G .

- Determine the maximum shear stress τ_{\max} in the bar.
- Determine the angle of twist ϕ between the ends of the bar.

Problem 2 (10 points):

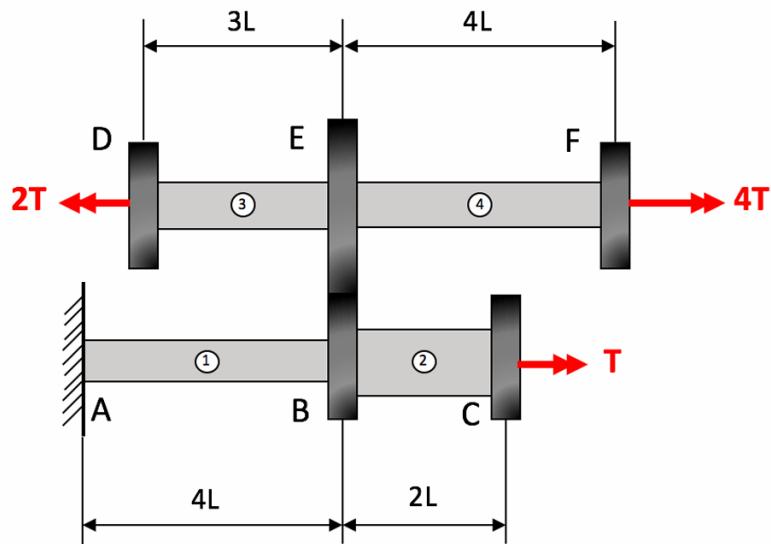

A solid rod (1) of diameter d_1 is enclosed by a concentric tube (2) of inner diameter d_{2i} and outer diameter d_{2o} , and both are attached to a rigid support at A and a rigid flat flange at B. A solid rod (3) of diameter d_3 is similarly attached to a rigid support at D and a rigid flat flange at C. The flanges are securely connected. Subsequently, an external torque T_B is applied at B.

- Determine the internal torques T_1, T_2, T_3 in three elements resulting from the load T_B
- Determine the maximum shear stresses $\tau_{\max(1)}, \tau_{\max(2)}, \tau_{\max(3)}$ in the three elements.
- Determine the angle of twist at the rigid flanges (B or C)

Given : $d_1 = 3 \text{ cm}$, $d_{2i} = 4 \text{ cm}$, $d_{2o} = 5 \text{ cm}$, $d_3 = 3.5 \text{ cm}$,

$$G_1 = 20 \text{ GPa}, G_2 = 10 \text{ GPa}, G_3 = 30 \text{ GPa},$$

$$L_1 = 200 \text{ cm}, L_3 = 100 \text{ cm}, T_B = 100 \text{ N m}$$

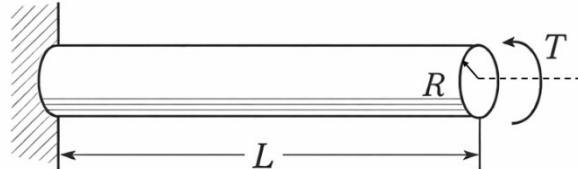

Problem 3 (10 points):

The gear shaft system consists of two parallel shafts, ABC and DEF. The shafts are interconnected by gears at B and E. The diameters of members 1, 2, 3, and 4 are d_1 , d_2 , d_3 and d_4 , respectively. Both shafts have the same shear modulus G. Determine the angle of twist at C and F

Given : $d_1 = D$, $d_2 = 2D$, $d_3 = 1.5D$, $d_4 = 1.5D$,

$d_B = 4D$, $d_E = 6D$; $D = 20 \text{ mm}$,

$L = 500 \text{ mm}$, $G = 100 \text{ GPa}$, $T = 1500 \text{ N m}$



Problem 4 (5 points):

Consider a circular shaft of radius R , length L , and shear modulus G , subjected to torque T at the free end, as shown in the figure. Determine the effect the following changes would have:

4.1 Increasing the shaft radius, R , would _____ the maximum shear stress

- (a) Increase
- (b) Decrease
- (c) Not change

4.2 Increasing the shaft length, L , would _____ the maximum shear stress

- (a) Increase
- (b) Decrease
- (c) Not change

4.3 Increasing the shaft shear modulus, G , would _____ the maximum shear stress

- (a) Increase
- (b) Decrease
- (c) Not change

4.4 Increasing the shaft radius, R , would _____ the angle of rotation at the free end

- (a) Increase
- (b) Decrease
- (c) Not change

4.5 Increasing the shaft length, L , would _____ the angle of rotation at the free end

- (a) Increase
- (b) Decrease
- (c) Not change