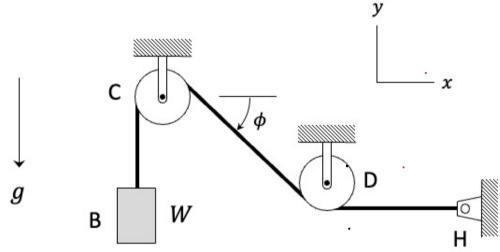
ME 323: Mechanics of Materials Summer 2025

the block. The pulleys are to be considered to be ideal.

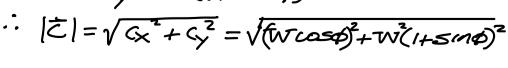

Sownow . Homework Set H04

Assigned/Due: June 19/June 24

The wire-pulley system shown supports block B of weight W. The diameters of the double-sided pulley pins C and D are d_C and d_D , respectively. The diameter of the wire is d_W . The pulley pins and wire are manufactured from the same grade of steel having a tensile yield strength of σ_Y and a shear strength in yielding of τ_Y . The minimum design factors of safety for the pins and the wire are FS_{pin} , and FS_{cable} , respectively. The weight of the wire can be neglected compared to that of

- a) Determine the diameters of the pulley pins that satisfy their design factor of safety.
- b) Determine the diameter of the wire that satisfies its design factor of safety.

Use the following parameter values in your analysis: $\phi = 36.87^{\circ}$, W = 2 kN, $\sigma_Y = 220$ MPa, $\tau_Y = 0.5\sigma_Y$, $FS_{pin} = 4$ and $FS_{wire} = 3$. Please substitute in these numerical values in the last step of your work.



FBD of pulleys

Since pulleys are ideal, the tension in calde is a constant Value of TV throughout.

Equilibrium of pulleys

C: $\Sigma F_{x} = C_{x} + W \cos \phi = 0$ $C = -W \cos \phi$ $\Sigma F_{y} = -W + C_{y} - W \sin \phi = 0$ $C_{y} = W(1 + \sin \phi)$

$$V_{c} = \text{shear force in pinc} = |z|$$

$$V_{c} = \text{shear shress in pinc} = |z|$$

$$V_{c} = \text{shear shress in pinc} = |x|$$

$$V_{c} =$$