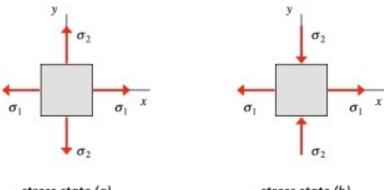
Conceptual question 13.3



stress state (a)

stress state (b)

Consider stress states (a) and (b) shown above, with $|\sigma_1| > |\sigma_2|$. Let $(|\tau|_{max,abs})_a$ and $(|\tau|_{max,abs})_b$ represent the absolute maximum shear stress corresponding to stress states (a) and (b), respectively. Circle the response below that describes the relative sizes of these stresses:

i)
$$\left(\left|\tau\right|_{max,abs}\right)_{a} > \left(\left|\tau\right|_{max,abs}\right)_{b}$$

ii)
$$\left(\left|\tau\right|_{max,abs}\right)_{a} = \left(\left|\tau\right|_{max,abs}\right)_{b}$$

iii)
$$\left(\left|\tau\right|_{max,abs}\right)_{a}<\left(\left|\tau\right|_{max,abs}\right)_{b}$$

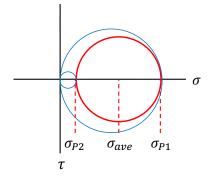
 iv) more information about the stress states is needed in order to answer this question Conceptual questions

Stress state "a"

$$\sigma_{ave} = (\sigma_1 + \sigma_2) / 2$$

$$R = (\sigma_1 - \sigma_2) / 2$$

Therefore $\sigma_{ave} > R$. From this we see that both σ_{P1} and σ_{P2} are positive. Because of this, the radius of the larger of the two out-of-plane Mohr's circles is maximum shear stress: $\tau_{max,abs} = \sigma_{P1}/2 = \sigma_1/2$.

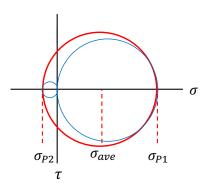


Stress state "b"

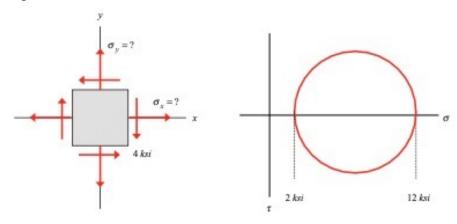
$$\sigma_{ave} = (\sigma_1 - \sigma_2) / 2$$

$$R = (\sigma_1 + \sigma_2) / 2$$

Therefore $\sigma_{ave} < R$. From this we see that σ_{P1} and σ_{P2} are of opposite signs. Because of this, the radius of in-plane circle is maximum shear stress: $\tau_{max,abs} = (\sigma_1 + \sigma_2) / 2$.



Conceptual question 13.6



Consider the state of plane stress shown above left where the two normal components of stress, σ_x and σ_y , are unknown. The Mohr's circle for this state of stress is provided in the figure above right. Determine numerical values for the two normal components of stress σ_x and σ_y . There may be more than one set of answers; you need only find one set.

$$\sigma_{ave} = (\sigma_x + \sigma_y)/2 = 7 \implies \sigma_x = 14 - \sigma_y$$

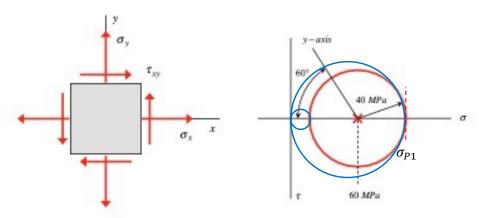
$$R^2 = (\sigma_x - \sigma_y)^2 / 4 + \tau_{xy}^2 = (14 - 2\sigma_y)^2 / 4 + \tau_{xy}^2 \Rightarrow$$

$$\sigma_y = \frac{1}{2} \left[14 - 2\sqrt{R^2 - \tau_{xy}^2} \right] = \frac{1}{2} \left[14 - 2\sqrt{5^2 - 4^2} \right] = 4 \text{ ksi}$$

$$\sigma_x = 14 - \sigma_y = 10 \text{ ksi}$$

Q3

Conceptual question 13.7



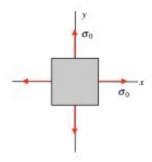
The Mohr's circle for a stress state is presented above.

- a) Determine the values of σ_x , σ_y and τ_{xy} for this stress state.
- b) What is the maximum absolute shear stress for the stress state?
- c) What is the smallest counter-clockwise rotation of the stress element above that will show the principal stresses on its faces?

$$\sigma_{P1} = 60 + 40 = 100MPa$$

Based on the larger of the two out-of-plane Mohr's circle: $\tau_{max,abs} = \sigma_{p1} / 2 = 50 MPa$

Conceptual question 13.9



The stress element for a particular state of stress is shown above. Let $|\tau|_{max,in-plane}$ and $|\tau|_{max,abs}$ represent the maximum in-plane shear stress and the absolute maximum shear stress, respectively, that corresponds to this state of stress. Circle the answer below that most accurately represents the relative sizes of $|\tau|_{max,in-plane}$ and

a)
$$0 < |\tau|_{max,in-plane} < |\tau|_{max,ab}$$

b)
$$0 = |\tau|_{max,in-plane} < |\tau|_{max,abs}$$

c)
$$0 < |\tau|_{max,abs} < |\tau|_{max,in-plane}$$

d)
$$0 = |\tau|_{max,abs} < |\tau|_{max,in-plane}$$

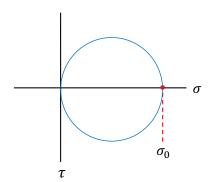
e)
$$0 < |\tau|_{max,in-plane} = |\tau|_{max,abs}$$

f)
$$0 = |\tau|_{max, in-plane} = |\tau|_{max, abs}$$

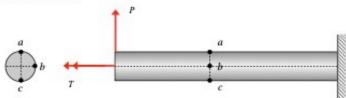
g) More information is needed about the state of stress in order to answer this question.

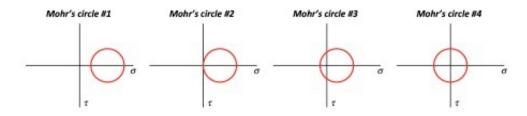
$$\begin{array}{l} \sigma_{ave} = \left(\sigma_0 + \sigma_0\right) \, / \, 2 = \sigma_0 \\ R = \left(\sigma_0 - \sigma_0\right) \, / \, 2 = 0 = \tau_{max,in-plane} \end{array}$$

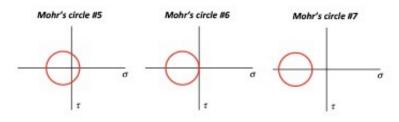
Therefore the in-plane Mohr's circle is a point. The radii of the out-of-plane Mohr's circles represent the absolute maximum shear stress: $\tau_{max,abs} = \sigma_{ave} = \sigma_0$.



Conceptual question 14.1







A cantilevered beam is loaded with a transverse force P and an axial torque T at its left end. Consider points "a", "b" and "c" on a cross section of the beam. In this problem, you are asked to match the stress state at each point with a Mohr's circle (Mohr's circles #1-#7). For this, circle the Mohr's circle below that matches each cross section point:

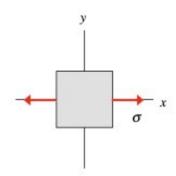
- Point "a": Mohr's circle #1 #2 #3 #4 #5 #6 #7
- Point "b": Mohr's circle #1 #2 #3 #4 #5 #6 #7
- Point "c": Mohr's circle #1 #2 #3 #4 #5 #6 #7

<u>Point "a"</u>: $\sigma_x < 0$ and $\tau_{xz} \neq 0$. Therefore: $\sigma_{ave} < 0$ and $|\sigma_{ave}| < R$

<u>Point "b"</u>: $\sigma_x = 0$ and $\tau_{xy} \neq 0$. Therefore: $\sigma_{ave} = 0$

<u>Point "c"</u>: $\sigma_x > 0$ and $\tau_{xz} \neq 0$. Therefore: $\sigma_{ave} > 0$ and $|\sigma_{ave}| < R$

Conceptual question 15.1



Consider the state of stress shown above in a ductile material. Let σ_{MSS} and σ_{MDE} be the values of the normal stress σ above that correspond to failure of the material using the maximum shear stress and maximum distortional energy theories, respectively. Circle the answer below the best describes the relative sizes of σ_{MSS} and σ_{MDE} . Provide a written explanation for your answer.

a)
$$\sigma_{MSS} < \sigma_{MDE}$$

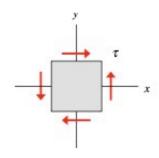
b)
$$\sigma_{MSS} = \sigma_{MDE}$$

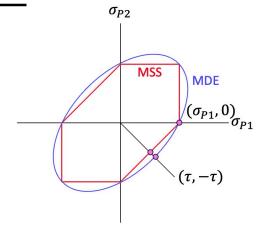
c)
$$\sigma_{MSS} > \sigma_{MDE}$$

$$\sigma_{ave} = \sigma / 2$$
 and $R = \sigma / 2 \implies \sigma_{P1} = \sigma$ and $\sigma_{P2} = 0$

Q7

Conceptual question 15.2





Consider the state of stress shown above in a ductile material. Let τ_{MSS} and τ_{MDE} be the values of the shear stress τ above that correspond to failure of the material using the maximum shear stress and maximum distortional energy theories, respectively. Circle the answer below the best describes the relative sizes of τ_{MSS} and τ_{MDE} . Provide a written explanation for your answer.

a)
$$\tau_{MSS} < \tau_{MDE}$$

b)
$$\tau_{MSS} = \tau_{MDE}$$

c)
$$\tau_{MSS} > \tau_{MDE}$$

$$\sigma_{ave} = 0$$
 and $R = \tau \implies \sigma_{P1} = \tau$ and $\sigma_{P2} = -\tau$