Problem 1 (10 points):

A cylindrical vessel (shown in Figure 1) has an internal radius of $\mathrm{r}=2.5 \mathrm{~m}$, and a wall thickness of $\mathrm{t}=15$ mm . The internal pressure in the vessel is $\mathrm{P}=1.5 \mathrm{MPa}$ and the maximum allowable stress in the walls of the vessel is 400 MPa . Determine:
a) Axial stress σ_{a} and hoop stress σ_{h} in the cylindrical part of the vessel.
b) Principal stresses $\sigma_{p 1}$ and $\sigma_{p 2}$
c) Maximum in-plane shear stress $\tau_{\max }$
d) Maximum allowable pressure $\mathrm{P}_{\text {allow }}$ such that $\sigma_{\mathrm{p} 1}$ doesn't exceed $\sigma_{\text {allow }}$.

Figure 1: Cylindrical vessel for Problem 1.

Problem 2 (10 points):

The stress element shown below represents the state of stress measured along the $x^{\prime} y$ ' axis in a component loaded under plane stress. No information is known about the stress α except that it is compressive.
(a) Determine the magnitude of the maximum compressive normal stress that can be applied, if the component is made of a material which can withstand a maximum in-plane shear stress of 100 MPa.
(b) Determine the stress components when the element is oriented along the $x-y$ axes using values from part a.
(c) Draw a stress element oriented along the maximum in-plane shear stress directions. (Show the angle of this rotated element with respect to the axis x ')

Figure 2: Stress element for Problem 2

Problem 3 (10 points):

For the following state of plane stress:
$\sigma_{x}=22 \mathrm{MPa} ; \sigma_{y}=10 \mathrm{MPa} ; \tau_{x y}=8 \mathrm{MPa}$; with other stresses zero
(a) Sketch the stresses on a stress element.
(b) Draw the Mohr's circle for this loading condition. Determine value of $\sigma_{\mathrm{p} 1}, \sigma_{\mathrm{p} 2}$, and in-plane $\tau_{\text {max }}$.
(c) Find the value of the maximum absolute shear stress $\tau_{\text {max,abs. }}$
(d) Determine the value of the stresses if the element is rotated counterclockwise by 45°.

Problem 4 ($2.5+2.5$ points):

I. A moment M (about positive z) and torque T (about positive x) are applied to a circular rod as shown in Figure 4.1. Choose the correct in plane Mohr's circle, from the given options, for the stress states at Point a and Point b. (Note that location of Point a is at (L/2, $\mathbf{0}, \mathbf{- R}$) where R is the radius of the cross section.)

Figure 4.1: Loading of circular rod for Problem 4.I

Mohr's circle \#1

Mohr's circle \#5

Mohr's circle \#2

Mohr's circle \#6

Mohr's circle \#3

Mohr's circle \#7

Mohr's circle \#4

Mohr's circle \#8 (Mohr's circle is a point!)
II. Consider stress states (a) and (b) shown in Figure 4.2, with $\left|\sigma_{1}\right|>\left|\sigma_{2}\right|$. Let $\left(|\tau|_{\max , a b s}\right)_{a}$ and $\left(|\tau|_{\max , a b s}\right)_{b}$ represent the absolute maximum shear stress corresponding to stress states (a) and (b), respectively. Choose the response below that describes the relative sizes of these stresses.
a) $\left(|\tau|_{\max , a b s}\right)_{a}>\left(|\tau|_{\max , a b s}\right)_{b}$
b) $\left(|\tau|_{\max , a b s}\right)_{a}=\left(|\tau|_{\max , a b s}\right)_{b}$
c) $\left(|\tau|_{\max , a b s}\right)_{a}<\left(|\tau|_{\max , a b s}\right)_{b}$

Figure 4.2: Stress states for Problem 4.II

