Problem 1 (10 points):

A cylindrical vessel (shown in Figure 1) has an internal radius of $\mathrm{r}=2.5 \mathrm{~m}$, and a wall thickness of $\mathrm{t}=15$ mm . The internal pressure in the vessel is $\mathrm{P}=1.5 \mathrm{MPa}$ and the maximum allowable stress in the walls of the vessel is 400 MPa . Determine:
a) Axial stress σ_{a} and hoop stress σ_{h} in the cylindrical part of the vessel.
b) Principal stresses $\sigma_{p 1}$ and $\sigma_{p 2}$
c) Maximum in-plane shear stress $\tau_{\max }$
d) Maximum allowable pressure $\mathrm{P}_{\text {allow }}$ such that $\sigma_{\mathrm{p} 1}$ doesn't exceed $\sigma_{\text {allow }}$.

Figure 1: Cylindrical vessel for Problem 1.

Problem 1

$$
\begin{aligned}
\frac{r}{t}=\frac{2500}{15}=166.6 \Rightarrow & \text { Thin walled vessel } \\
& \text { (or take } \frac{t}{r} \ll 1 \text {) }
\end{aligned}
$$

a) Axial stress:)

$$
\begin{aligned}
& \sigma_{a}=\frac{p r}{2 t}=\frac{1.5 \times 2500}{2 \times 15}=125 \mathrm{MPa} \\
& \sigma_{h}=\frac{p r}{t}=250 \mathrm{MPa}
\end{aligned}
$$

b.) Principal stresses

$$
\begin{aligned}
& \sigma_{p_{1}}=\sigma_{r}=250 \mathrm{MPa} \\
& \sigma_{p_{2}}=\sigma_{a}=12 \mathrm{smPa}
\end{aligned}
$$

c) Max in-plane shear stress

$$
\tau_{\text {max }}=\sqrt{\left.\frac{\left(\sigma_{h}-\sigma_{a}\right.}{2}\right)^{2}}=62.5 \mathrm{MPa}
$$

d.)

$$
\begin{aligned}
& \sigma_{\text {allow }}=\frac{P_{\text {allow }} \times r}{t} \\
& 4 \phi \phi=\frac{P_{\text {allow }} \times 25 \phi \phi}{1 / 5_{3}} \\
& 2.4 \mathrm{MPa}=P_{\text {allow }}
\end{aligned}
$$

Problem 2 (10 points):

The stress element shown below represents the state of stress measured along the x'y' axis in a component loaded under plane stress. No information is known about the stress α except that it is compressive.
(a) Determine the magnitude of the maximum compressive normal stress that can be applied, if the component is made of a material which can withstand a maximum in-plane shear stress of 100 MPa.
(b) Determine the stress components when the element is oriented along the $x-y$ axes.
(c) Draw a stress element oriented along the maximum in-plane shear stress directions. (Show the angle of this rotated element with respect to the axis x^{\prime})

Figure 2: Stress element for Problem 2
(a) Let the stress along the y^{\prime} direction be $\sigma_{y^{\prime}}$. In the $x^{\prime} y^{\prime}$ orientation as seen in the problem figure, the element is in oriented along the principal stress direction (as shear stress $\tau_{x^{\prime} y^{\prime}}$ is 0). Hence $\sigma_{x^{\prime}}(=70 \mathrm{MPa})$ and $\sigma_{y^{\prime}}$ are principal stresses.

Given max shear stress that the material can withstand is 100 MPa , we have

$$
\begin{gathered}
\left|\tau_{\max }\right|=100 \mathrm{MPa} \\
=> \\
\frac{\left|\sigma_{y^{\prime}}-\sigma_{x^{\prime}}\right|}{2}=100 \mathrm{MPa}
\end{gathered}
$$

$$
\begin{gathered}
=>\sigma_{y^{\prime}}-70= \pm 200 \\
=>\sigma_{y^{\prime}}=+270 \mathrm{MPa} \text { or }-130 \mathrm{MPa}
\end{gathered}
$$

Since $\sigma_{y^{\prime}}$ is a compressive state of stress

$$
\sigma_{y^{\prime}}=-130 \mathrm{MPa}
$$

Hence magnitude of $\sigma_{y^{\prime}}$, i.e.,

$$
\alpha=130 \mathrm{MPa}
$$

(b) The stress components along the xy axes can be obtained by rotating $\theta=-30^{\circ}$

$$
\begin{gathered}
\sigma_{x}=\frac{\sigma_{x^{\prime}}+\sigma_{y^{\prime}}}{2}+\left(\frac{\sigma_{x^{\prime}}-\sigma_{y^{\prime}}}{2}\right) \cos (2 \theta)+\tau_{x^{\prime} y^{\prime}} \sin (2 \theta) \\
\sigma_{x}=20 \mathrm{MPa} \\
\sigma_{y}=\frac{\sigma_{x^{\prime}}+\sigma_{y^{\prime}}}{2}-\left(\frac{\sigma_{x^{\prime}}-\sigma_{y^{\prime}}}{2}\right) \cos (2 \theta)-\tau_{x^{\prime} y^{\prime}} \sin (2 \theta) \\
\sigma_{y}=-80 \mathrm{MPa} \\
\tau_{x y}=-\left(\frac{\sigma_{x^{\prime}}-\sigma_{y^{\prime}}}{2}\right) \sin (2 \theta)+\tau_{x^{\prime} y^{\prime}} \cos (2 \theta) \\
\tau_{x y}=86.603 \mathrm{MPa}
\end{gathered}
$$

(c) Max shear stress is oriented at an angle of $\pm 45^{\circ}$ to the principal axis. In this problem, the principal axis is oriented along $x^{\prime} y^{\prime}$ axis. For the solution we will consider a rotation of $\beta=$ -45° to get to max shear orientation

$$
\begin{gathered}
\left.\tau_{x^{\prime \prime} y^{\prime \prime}}=\tau_{\max }=-\left(\frac{\sigma_{x^{\prime}}-\sigma_{y^{\prime}}}{2}\right) \sin (2 \beta)\right)+\tau_{x^{\prime} y^{\prime}} \cos (2 \beta) \\
\tau_{\max }=100 \mathrm{MPa}
\end{gathered}
$$

The correspnding normal stress along $x^{\prime \prime}$ is

$$
\begin{gathered}
\sigma_{x^{\prime \prime}}=\frac{\sigma_{x^{\prime}}+\sigma_{y^{\prime}}}{2}+\left(\frac{\sigma_{x^{\prime}}-\sigma_{y^{\prime}}}{2}\right) \cos (2 \beta)+\tau_{x^{\prime} y^{\prime}} \cos (2 \beta) \\
\sigma_{x^{\prime \prime}}=\frac{\sigma_{x^{\prime}}+\sigma_{y^{\prime}}}{2}=-30 \mathrm{MPa}=\sigma_{\text {ave }}
\end{gathered}
$$

And along $y^{\prime \prime}$ axis is

$$
\begin{gathered}
\sigma_{y^{\prime \prime}}=\frac{\sigma_{x^{\prime}}+\sigma_{y^{\prime}}}{2}-\left(\frac{\sigma_{x^{\prime}}-\sigma_{y^{\prime}}}{2}\right) \cos (2 \beta)-\tau_{x^{\prime} y^{\prime}} \cos (2 \beta) \\
\sigma_{y^{\prime \prime}}=\frac{\sigma_{x^{\prime}}+\sigma_{y^{\prime}}}{2}=-30 \mathrm{MPa}=\sigma_{a v e}
\end{gathered}
$$

Problem 3 (10 points):

For the following state of plane stress:
$\sigma_{x}=22 \mathrm{MPa} ; \sigma_{y}=10 \mathrm{MPa} ; \tau_{x y}=8 \mathrm{MPa} ;$ with other stresses zero
(a) Sketch the stresses on a stress element.
(b) Draw the Mohr's circle for this loading condition. Determine value of $\sigma_{p 1}, \sigma_{p 2}$, and in-plane $\tau_{\text {max }}$.
(c) Find the value of the maximum absolute shear stress $\tau_{\text {max,abs }}$
(d) Determine the value of the stresses if the element is rotated counterclockwise by 45°.

Problean 3

$$
\sigma_{x}=22 \mathrm{MPa}, \sigma_{y}=10 \mathrm{MPa}, \tau_{x y}=8 \mathrm{MPa}
$$

a．）

b．）

$$
\begin{aligned}
& R=10 \mathrm{mPa} \\
& \sigma_{P_{1}}=26 \mathrm{MPa} \\
& \sigma_{P_{2}}=6 \mathrm{MPa} \\
& \tau_{\text {mea }}=10 \mathrm{MPa}
\end{aligned}
$$

c．）$\tau_{\text {max，abs }}=\frac{\sigma_{p_{1}}}{2}=13 \mathrm{MPa}$
d．）Element rotated counter clocavise by 45°

$$
\begin{aligned}
& \sigma_{x}^{\prime}=\frac{\sigma_{x}+\sigma_{y}}{2}+\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right) \cos 2 \theta+\tau_{x y} \sin 2 \theta \\
& =16+0+8 \\
& =24 \mathrm{MPa} \\
& \tau_{\text {为夷 } x_{y}^{\prime}}=-\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right) \sin 2 \theta+\tau_{x y} \cos 2 \theta \\
& =-\omega \mathrm{MPa} \\
& \sigma_{y}^{\prime}=\frac{\sigma_{x}+\sigma_{y}}{2}-\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right) \cos 2 \theta-\tau_{x y} \sin 2 \theta \\
& =16-0-8 \\
& =8 \mathrm{MPa}
\end{aligned}
$$

Problem 4 ($2.5+2.5$ points):

I. A moment M (about positive z) and torque T (about positive x) are applied to a circular rod as shown in Figure 4.1. Choose the correct in plane Mohr's circle, from the given options, for the stress states at Point a and Point b. Justify. (Note that location of Point a is at (L/2,0,-R) where R is the radius of the cross section.)

Figure 4.1: Loading of circular rod for Problem 4.I

Point a - The correct Mohr's circle is \#4

$$
\begin{gathered}
\tau_{x y}>0 \\
\sigma_{x}=0, \quad \sigma_{y}=0 \\
\sigma_{a v g}=\frac{\left(\sigma_{x}+\sigma_{y}\right)}{2}=0
\end{gathered}
$$

Point b - The correct Mohr's circle is \#5

$$
\begin{aligned}
& \tau_{x z}>0 \\
& \sigma_{x}<0, \quad \sigma_{z}=0 \\
& \sigma_{a v g}=\frac{\left(\sigma_{x}+\sigma_{y}\right)}{2}<0
\end{aligned}
$$

II.

Consider stress states (a) and (b) shown above, with $\left|\sigma_{1}\right|>\left|\sigma_{2}\right|$. Let $\left(|\tau|_{\max , a b s}\right)_{a}$ and $\left(|\tau|_{\max , a b s}\right)_{b}$ represent the absolute maximum shear stress corresponding to stress states (a) and (b), respectively. Choose the response below that describes the relative sizes of these stresses.

