PROBLEM \#1 (25 points)

The beam BD has a distributed load p_{o} acting between B and D and a concentrated moment M_{0} applied at D as shown. The beam is fixed at B and is supported by a roller at D. E and I are constant along the beam. p_{o} has a value of $16 \mathrm{P} / \mathrm{L}$ and M_{o} has a value of 2PL. Use the second-order integration method to answer the following:

$$
p_{0}=16 \mathrm{P} / \mathrm{L} \quad \mathrm{M}_{0}=2 \mathrm{PL}
$$

a) Draw the FBD for the beam BD.

\qquad
b) Write the equilibrium equations for the beam BD .

$$
\begin{align*}
& \Sigma m_{D}=m_{0}+p_{0} L\left(\frac{L}{2}\right)-B_{y} L-m_{B}=0 \tag{1}\\
& \Sigma F_{y}=B_{y}-p_{0} L+D_{y}=0 \tag{2}
\end{align*}
$$

c) Calculate the reactions on the beam at B and D in terms of P and L.

Use 2 un order integration :

$$
\begin{aligned}
& m_{B}\left(\sum_{1-x \rightarrow 1}^{p_{0} x} r_{V}^{k} m_{B}(x) \sum m_{k}=m(x)+p_{0} x\left(\frac{x}{2}\right)-B_{y} x-m_{B}=0\right. \\
& \theta(x)=\theta(0)+\frac{1}{E I} \int_{0}^{0}\left(m_{B}+B_{y} x-B_{y} x-p_{0} \frac{x^{2}}{2}\right) d x=E I \frac{d \theta}{d x} \\
& \theta(x)=\frac{1}{E I}\left[m_{B} x+B_{y} \frac{x^{2}}{2}-p_{0} \frac{x^{3}}{6}\right]=\frac{d v}{d x}
\end{aligned}
$$

$$
\begin{aligned}
& v(x)=v(0)+\frac{1}{E I} \int_{0}^{x}\left[m_{B} x+B_{y} \frac{x^{2}}{2}-p_{0} \frac{x^{3}}{6}\right] d x{ }^{\text {Name (Print) }} \frac{\text { SoLUTION }}{\text { (First) }} \\
& v(x)=\frac{1}{E I}\left[m_{B} \frac{x^{2}}{2}+B_{y} \frac{x^{3}}{6}-p_{0} \frac{x^{4}}{24}\right]
\end{aligned}
$$

$$
\begin{align*}
& \underline{B \cdot C}: v(L)=0 \\
& v(L)=\frac{m_{B} \frac{L^{2}}{3}+B_{y} \frac{L^{3}}{b_{3}}-p_{0} \frac{L^{4}}{24}}{m_{B}+B_{y} \frac{L}{3}-p_{0} \frac{L^{2}}{12}=0}=0 \tag{3}
\end{align*}
$$

$$
B \cdot C: v(L)=0
$$

Solve (1) a (3) to calculate B_{y} :

$$
B_{y}=\frac{3}{2 L}\left[5 p_{0} L+m_{0}\right]
$$

Replace $p_{0}=\frac{16 P}{L} \quad M_{0}=2 P L$
d) Find the equation for the vertical displacement, $v(x)$ throughout the beam in terms of P, L, E, and I.

$$
B y=13 P
$$

$$
U \operatorname{se}(2): D_{y}=3 P
$$

Solve m_{B} from (3): $M_{B}=-3 P L$

Replace $B y, D_{y} \& m_{B}$ in $v(x)$

$$
\begin{aligned}
& \text { Replace By, } \\
& v(x)=\frac{1}{E I}\left[-\frac{3}{2} P L x^{2}+\frac{13}{6} P x^{3}-\left(\frac{16 P}{L}\right) \frac{x^{4}}{24}\right] \\
& v(x)=\frac{P}{E I}\left[-\frac{3}{2} L x^{2}+\frac{13}{6} x^{3}-\frac{2}{3} \frac{x^{4}}{2}\right]
\end{aligned}
$$

Name (Print) \qquad
e) Find the slope at point D in terms of P, L, E, and I.

$$
\begin{aligned}
\theta(L) & =\frac{1}{E I}\left[-3 P L(L)+\frac{13}{2} P L^{2}-\left(\frac{16 P}{L}\right) \frac{L^{3}}{6}\right] \\
& =\frac{P L^{2}}{E I}\left[-3+\frac{13}{2}-\frac{8}{3}\right] \\
\theta(L) & =\frac{5 P L^{2}}{6 E I}
\end{aligned}
$$

11 sing indefinite integrals, or other correct solutions was acceptable.

Exam 2
April 3, 2024

PURDUE

PROBLEM \#2 (25 points)
Cantilever beam AD of the bending stiffness $E I$ is subjected to a concentrated moment M_{0} at C . The beam is also pin-supported at B by a rod BK of the length L, Young's modulus E, and cross-section area A.

(a) Draw the free body diagram of beam AD and rod BK . List the equilibrium equations.

$$
\begin{aligned}
& \bar{z} F y=D_{y}+F_{B K}=0 \\
& \bar{Z} M_{D}=F_{B D} \cdot 2 L+M_{0}+M_{D}=0
\end{aligned}
$$

(b) Is AD a statically determined or indeterminate structure? If it is statically indeterminate, state your choice of redundant support.
statically inderememinate
choose F_{k} as the reedideant support
(Attentively, we can also course $F_{B k}$ or M_{D} as redelundant support)

ME 323 - Mechanics of Materials
\qquad
(c) Determine the internal reactions of the sections AB, BC, and CD , as well as rod BK in terms of the
redundant support you identified in part (b).
For $A B$:
$\rightarrow p_{0}^{M_{1}} F_{1}$

$$
F_{1}=V_{1}=M_{1}=0
$$

For $B C$:

For CD:

$$
\begin{aligned}
& F_{2}=0, \quad V_{2}=F_{B K}=F_{k} \\
& M_{2}(x)=-F_{B K}(x-L)=-F_{k}(x-L)
\end{aligned}
$$

$$
F_{3}=0, \quad V_{3}=F_{B K}=F_{k}
$$

$$
M_{3}(x)=-F_{k}(x-k)-M_{0}
$$

For Bk

$$
F_{4}=F_{k}, V_{4}=M_{4}=0
$$

(d) Show the strain energies of the sections AB, BC, CD and BK. The strain energies may include the uniaxial strain energy U_{A}, shear strain energy due to torsion U_{T}, flexural strain energy due to bending U_{σ}.
Neglect the shear strain energy due to bending U_{τ}. Neglect the shear strain energy due to bending U_{τ}.

$$
\begin{aligned}
& \text { strain enagies: U.AB }=0, \\
& U_{B C}=\frac{1}{2} \int_{L}^{L L M_{2}^{2}(x)} E I d x=\frac{1}{2} \int_{L}^{2 L} \frac{F_{K}^{2}(x-L)^{2}}{E I} d x \\
& U_{C D}=\frac{1}{2} \int_{2 L}^{3 L} \frac{M_{3}^{2}(x)}{E I} d x=\frac{1}{2} \int_{2 L}^{3 L} \frac{\left(F_{K}(x-L)+M_{0}\right)^{2}}{E I} d x \\
& U_{B K}=\frac{1}{2} \int_{0}^{L} \frac{F_{4}^{2}}{E A} d x=\frac{1}{2} \int_{0}^{L} \frac{F_{K}^{2}}{E A} d x
\end{aligned}
$$

ME 323 - Mechanics of Materials
\qquad

$$
\begin{aligned}
& \text { Total strain energy of the system: } \\
& \begin{array}{l}
\text { Total Strain energy of the system: } \\
U=U_{B C}+U_{C D}+U_{B K}=\frac{1}{2} \int_{L}^{2 L} \frac{F_{k}(x-L)^{2}}{E I} d x
\end{array} \\
& +\frac{1}{2} \int_{2 L}^{3 L} \frac{\left(F_{K}(x-L)+M_{0}\right)^{2}}{E I} d x+\frac{1}{2} \int_{0}^{L} \frac{F_{K}^{2}}{E A} d x \\
& \Delta_{K}=\frac{\partial U}{\partial F_{K}}=0 \Rightarrow \int_{L}^{2 L} \frac{F_{K}(x-L)^{2}}{E I} d x+\int_{2 L}^{3 L} \frac{\left(F_{K}(x-L)+M_{0}\right)(x-L)}{E I} d x \\
& +\int_{\text {ind }}^{L} \frac{F K}{L} d x
\end{aligned}
$$

$$
\begin{aligned}
& \text { continue }(e) \text { : } \\
& =\left.\frac{1}{3} F_{K} \frac{(x-L)^{3}}{E I}\right|_{L} ^{2 L}+\left.\frac{1}{3} F_{K} \frac{(x-L)^{\beta}}{E I}\right|_{2 L} ^{3 L}+\left.\frac{1}{2} M_{0} \frac{(x-L)^{2}}{E I}\right|_{2 L} ^{3 L} \\
& +\frac{F_{k} L}{E A} \\
& =\frac{1}{3} \frac{F_{k} \cdot L^{3}}{E I}+\frac{1}{3} F_{k} \cdot \frac{T L^{3}}{E I}+\frac{1}{2} M_{0} \frac{3 L^{2}}{E I}+\frac{F_{k} L}{E A}=0
\end{aligned}
$$

ME 323 - Mechanics of Materials

Name (Print) \qquad

$$
\Rightarrow F_{k}=-\frac{3}{2} \frac{\mu_{0} L}{I} /\left(\frac{\delta}{3} \frac{L^{2}}{I}+\frac{1}{A}\right)
$$

Alternatively: If we choose $F_{B K}$ as the redundant support, then seitan energy $\quad U=U_{B C}+U_{C D}=\frac{1}{2} \int_{L}^{2 L} \frac{F_{k}^{2}(x-L)^{2}}{E I} d x+\frac{1}{2} \int_{2 L}^{3 L} \frac{\left(F_{k}(x-L)+N L_{0}\right)^{2}}{E I} d$ The compathicicty condition:
$\Delta_{\beta}=\frac{\partial U}{\partial F_{F B} K}=-\frac{F_{B K} L}{E A}$. It gives the same conclusion.
part (f) : potation allee at C :

$$
\begin{aligned}
\theta_{c}=\frac{\partial U}{\partial M_{0}} & =\int_{2 L}^{3 L} \frac{F_{k}(x-L)+M_{0}}{E I} d x \\
& =\frac{M_{0} L}{E I}+\frac{\frac{3}{2} F_{k} L^{2}}{E I}
\end{aligned}
$$

Name (Print) \qquad

PROBLEM \#3 (25 points):

Beam $B C D$ has a length of $4 a$ and is supported by a fixed support at B and a roller at C. A concentrated force and a concentrated moment are applied as shown in the diagram below. The beam has a circular cross-section with a radius (r) of a/10. ie. $a=10 r$

(a) Draw the free body diagram of the beam.

(b) Write the equilibrium equations for the beam.

ME 323 - Mechanics of Materials
Exam 2
5 PURDUE
April 3, 2024
Name (Print) \qquad
(c) Use the superposition tables to determine the reactions at B and C.
$V_{p}=-\frac{P x^{2}}{6 E I}(3 a-x) \quad 0<x<a \Rightarrow$ not valid ait $x=2 a$.
$v_{p}=-\frac{P a^{2}}{6 E I}(3 x-a) \quad a<x<4 a \Rightarrow$ need to use this
One
$\left.V_{c y}=\frac{C_{y x a}}{6 C I}(6 a-x) \quad 0<x<2 a\right\}$ both valid
$\left.v_{c y}=\frac{c_{y}(2 a)^{2}}{E I}(3 x-2 a) \quad 2 a<x<4 a\right\}$ at $x=2 a$.

$$
v_{M_{0}}=\frac{M_{0 x^{2}}}{2 E I} \quad 0<x<4 a
$$

$$
v(2 a)=0=-\frac{P_{a}{ }^{2}}{6 E I}(6 a-a)+\frac{C_{y}(2 a)^{2}}{b_{E I}}(4 a)+\left(\frac{P_{a}}{12}\right) \frac{(2 a)^{2}}{2 E I}
$$

$$
\begin{equation*}
0=-\frac{5}{6} p+\frac{16}{6} C y+\frac{1}{6} p \tag{1}
\end{equation*}
$$

$$
\Rightarrow C_{y}=\frac{p}{4}
$$

(2) $M_{B}=-P_{a}+2(2 a)\left(\frac{P}{4}\right)+\frac{P_{a}}{12}$
$B_{y}=P-C_{y}$

$$
\Rightarrow M_{B}=-\frac{5}{12} P a
$$

$B y=\frac{3}{4} p$

April 3, 2024
Name (Print)
\qquad
(Last)
(d) Draw the shear force and bending moment diagrams below.

(e) Determine the location (along x) of the maximum flexural stress in the beam.

$$
x=0(A+B
$$

(f) Determine the magnitude of the maximum flexural stress in the beam.

$$
|\sigma|=\frac{M_{q}}{J}=\frac{\left(\frac{5}{1} p q\right)\left(\frac{a}{10}\right)}{\pi\left(\frac{10}{10}\right)}=\frac{5000 p}{3 \pi a^{2}}
$$

(g) Determine the location (along x) of the maximum shear stress in the beam.

$$
0<x<a
$$

(h) Determine the magnitude of the maximum shear stress in the beam.

$$
\tau=\frac{4}{3} \frac{V}{A}=\frac{4}{3}\left(\frac{3}{4} P\right) \frac{1}{\pi\left(\frac{9}{b}\right)^{2}}=\frac{100 p}{\pi a^{2}}
$$

ME 323 - Mechanics of Materials

Exam 2
April 3, 2024

PROBLEM \#4 (25 points)
Part (A): (5 pts)
Circle which of the schematics presented below depicts the deflection curve of the following beam:

(a)

(b)

(d)

(e) None of the above

Note: both (C) and (e) are cercepled as a coneet answer.
The beam slope at the voller appears to be zero which was not interded t be.

School of Mechanical Engineering

Name (Print)
(Last)
(First)
Part (B): (5 pts)
The following beam is loaded with concentrated moments and concentrated forces. Loading is unknown, however, the bending moment diagram for the beam is provided below:

(i) Draw the shear force diagram in the above figure.
(ii) What is the reaction force at the roller support D? Assuming no loading is applied at D.

$$
F_{D}=-8 k i p s
$$

School of Mechanical Engineering

Name (Print)

Part (C): (5 pts)

The following rigid structure is composed of arms AB and BC and is fixed to the wall at A . It is subject to a force P at C in the negative y direction. How many strain energy terms contribute to the total strain energy of the system? Note that the strain energy may include the uniaxial strain energy U_{A}, shear strain energy due to torsion U_{T}, flexural strain energy due to bending U_{σ}, and shear strain energy due to bending U_{τ}.

(a) 3
(b) 4

5
(d) 6

Exam 2
April 3, 2024

PURDUE

Name (Print) \qquad
(Last)
(First)

Part (D): (10 pts)
The double-cantilever beam AD is of an arbitrary shape. Two concentrated forces are applied where $P=$ 100 lbs . In solving this mechanics problem using the finite element method, beam AD is discretized into 3 elements and 4 nodes which are marked as 1,2,3, and 4 in the following figure, where nodes 1 and 4 are on the walls.

(i) The stiff matrix is given below, however, some components are missing. Fill up the missing components in the matrix.

$$
\left[\begin{array}{cccc}
2 & -2 & 0 & 0 \\
-2 & 3 & -1 & 0 \\
0 & -1 & -3 & -3 \\
0 & 0 & -3 & 3
\end{array}\right] \times 10^{5} \mathrm{lb} / \mathrm{in}
$$

$$
\begin{aligned}
& k_{1}=2 \times 10^{5} \mathrm{lb} / \mathrm{in} \\
& k_{2}=1 \times 10^{5} \mathrm{lb} / \mathrm{in} \\
& k_{3}=3 \times 10^{5} \mathrm{ub} / \mathrm{in}
\end{aligned}
$$

Endue He fixed boundary coalition

$$
\begin{aligned}
& {\left[\begin{array}{cc}
3 & -1 \\
-1 & 4
\end{array}\right] \times 10^{5} \cdot\left\{\begin{array}{l}
u_{2} \\
u_{3}
\end{array}\right\}=\left\{\begin{array}{l}
-100 \\
200
\end{array}\right\}} \\
& u_{2}=-\frac{2 \times 10^{-3}}{11} \text { in, } u_{3}=\frac{5 \times 10^{-3}}{11} \text { in }
\end{aligned}
$$

(iii) Determine the internal forces in the three elements.

$$
\begin{aligned}
& F=k_{1} \cdot\left(u_{2}-u_{1}\right)=2 \times 10^{5} \cdot\left(-\frac{2}{11} \times 10^{-3}\right)=\frac{-400}{11} u_{0} \\
& F_{2}=K_{2}\left(u_{3}-u_{2}\right)=1 \times 10^{5} \cdot\left(\frac{7}{11} \times 10^{-3}\right)=\frac{700}{11} 16
\end{aligned}
$$

$$
F_{3}=k_{3}\left(U_{4}-U_{3}\right)=3 \times 10^{\circ}\left(-\frac{11}{11}\right)=\frac{11}{1}
$$

ME 323 - Mechanics of Materials
Exam 2
April 3, 2024

Name (Print)

School of Mechanical Engineering

