Problem 9.1 (10 points)

A three-segment rod AD is fixed to walls at A and D. An external load 2P is applied at C and an external load P applied at B . The properties are shown in the figure. Segments 1,2 , and 3 have Young's modulus $4 \mathrm{E} / 3, \mathrm{E} / 2$, and $3 \mathrm{E} / 2$, respectively. Segments 1, 2, and 3 have cross-sectional area 3A, 6A, and 2A, respectively.
a) Use three finite elements (one element per segment), write down the stiffness matrix $[\mathrm{K}]$ and the forcing vector [F$]$.
b) Enforcing the boundary conditions, write the reduced system of equations and solve for the displacements at B and C.
c) Determine the reactions at A and D.

A rod is made of three segments: BC, CD, and DH . All segments have length L and are made of a material with Young's modulus E. The cross-sectional area of segment BC decreases linearly from 2 A at B to A at C . The cross-sectional area of segment C is constant. The cross-sectional area of segment DH increases linearly from A at D to 3 A at H . A force P acts to the left at point D .

Use a three-element (four-node) finite element model to do the following:
a) Construct the global stiffness matrix $[\mathrm{K}]$ in terms of E, A, and L .
b) Construct the force vector $[\mathrm{F}]$ in terms of P .
c) Enforce the displacement boundary conditions.
d) Solve for the nodal displacements in terms of PL/EA.
e) Determine the reactions at walls B and H in terms of P .
f) Compare the results from different numbers of elements (use 5 and 7). Use the code provided in the lecture book or write your own.

Note: Attach your modified code to your submission.

Problem 9.3 (10 points)
A beam ABC of length 2L is loaded with a distributed load over half its length as shown in the figure below. The beam is fixed at A and supported by a roller at C. The beam has a modulus of elasticity E and second area moment of the crosssection I. Determine the following: Give your answers in terms of $p_{0}, \mathrm{E}, \mathrm{I}, \mathrm{x}, \mathrm{L}$.
a) The reaction forces at A, B, and C. (Hint: make use of the principle of superposition to avoid integration).
b) The bending moment $M(x)$.
c) The shear force $V(x)$.
d) Plot both the shear force and bending moment diagrams.

Problem $9.4(2.5+2.5$ points $)$

1) A shaft has a stiffness matrix $[\mathrm{K}]=\left[\begin{array}{ccc}K 1 & -K 1 & 0 \\ -K 1 & K 1+K 2 & -K 2 \\ 0 & -K 2 & K 2\end{array}\right]$. The right end of the shaft is free. Simplify the matrix.
a. $\left[\begin{array}{cc}K 1 & -K 1 \\ -K 1 & K 1+K 2\end{array}\right]$
b. $\left[\begin{array}{cc}K 1+K 2 & -K 2 \\ -K 2 & K 2\end{array}\right]$
c. $\left[\begin{array}{cc}K 1 & -K 1 \\ -K 1 & K 1+K 2 \\ 0 & -K 2\end{array}\right]$
2) What is the order of the reduced stiffness matrix for a shaft composed of 4 elements and with both ends fixed.
a. 4
b. 3
c. 5
d. 6
