PROBLEM \# 1 (25 points)

A rigid member BDCK is supported by two deformable supports, and it is pinned at C. Deformable support (1) consists of rod KN, and deformable support (2) consists of rod DM. Both rods have length L, cross-sectional area A, Young's modulus E, and coefficient of thermal expansion α. The assembly is loaded at B with a vertical force P. Rod (1) experiences an increase in temperature equal to $\Delta \mathrm{T}$, while the temperature of rod (2) does not change.
a) Draw the free body diagram (FBD) of member BDCK at equilibrium.

b) Write down the equilibrium equations of member BDCK.

$$
\begin{aligned}
& \Sigma M_{c}=\frac{-F_{1}(3 \nsim)+P(2 \&)+F_{2}(\not)=0}{F_{2}=3 F_{1}-2 P} \\
& \Sigma F_{x}=C_{x}+F_{1}+F_{2}=0 \\
& \Sigma F_{y}=C_{y}-P=0
\end{aligned}
$$

\qquad
c) Is the problem statically determinate or indeterminate?

3eqn's, 4 unknowns $=D$ Indeterminate
d) Write down the force/elongation equations relating the elongations of rods (1) and (2) to the axial loads in rods (1) and (2).

$$
\begin{align*}
& e_{1}=\frac{F_{1} L}{A E}+\alpha \Delta T L \tag{}\\
& e_{2}=\frac{F_{2} L}{A F} \tag{3}
\end{align*}
$$

e) Write down the compatibility equations relating the elongations in rods (1) and (2).

See Fig. $\quad \theta \approx \frac{e_{1}}{3 \alpha}=-\frac{e_{2}}{\alpha} \quad e_{1}=-3 e$ (4)

$$
\frac{F_{1} K}{A E}+\alpha \Delta T K V_{=}^{A E}=-3 \frac{F_{2} k}{A E} \quad F_{1}+\alpha \Delta T A E=-3 F_{2} \text { (5) }
$$

f) Calculate the axial loads in rods (1) and (2).

From Eq'u (1): $F_{2}=3 F_{1}-2 P=D$ Replace in (s)

$$
\begin{aligned}
& F_{1}+\alpha \Delta T A E=-3\left(3 F_{1}-2 P\right)=-9 F_{1}+6 P \\
& 10 F_{1}=6 P-\alpha \Delta T A E \quad\left(F_{1}=\frac{3}{5} P-\frac{\alpha \Delta T A E}{10}\right.
\end{aligned}
$$

g) If there was no increase in temperature, that is if $\Delta T=0$, state whether each rod is in tension or compression.
Replace F_{1} in $F_{2}: F_{2}=3\left(\frac{3}{5} P-\frac{\alpha \Delta T A E}{10}\right)-z P$

$$
F_{2}=-\frac{P}{5}-\frac{3}{10} \propto \Delta T A E
$$

If $\Delta T=0$

$$
\begin{aligned}
& F_{1}=\frac{3}{5} P \Rightarrow \text { tension } \\
& F_{2}=-\frac{P}{5}=D \text { compression }
\end{aligned}
$$

Exam 1
February 28, 2024

PURDUE

School of Mechanical Engineering

Name (Print) \qquad
(Last)
(First)
h) If the vertical force is removed, that is if $P=0$, state whether each rod is in tension or compression (due to the thermal loads).

$$
\text { If } P=0
$$

$$
F_{2}=-\frac{3}{10} \alpha \Delta T A E
$$

Name (Print) \qquad
(Last)
PROBLEM \#2 (25 Points): A torsion assembly consists of a solid torsion member between B and C and a hollow torsion member between C and D . A torque of T_{O} is applied at C , as shown in the image below. Both torsion members have a shear modulus of G.

a) Draw the free body diagrams) of the assembly.

b) Write the equilibrium equations) for the assembly.

$$
\Sigma T=T_{0}+T_{2}-T_{1}=0
$$

\qquad
c) Is the system determinate or indeterminate?

Indeterminate
d) Determine the torque in each shaft in terms of the applied torque $\left(\mathrm{T}_{0}\right)$.

Torque-twist

$$
\begin{aligned}
& \Delta \phi_{1}=\frac{T_{1} h}{G I_{p 1}} \\
& \Delta b_{2}=\frac{T_{1}(3 L)}{G \pm p \lambda}
\end{aligned}
$$

$$
\begin{gathered}
I_{p_{1}}=\frac{\pi}{2}\left(\frac{2 D}{2}\right)^{4}=\frac{\pi}{2} D^{4} \\
I_{D_{1}}=\frac{\pi}{2}\left[\left(\frac{4 D}{2}\right)^{4}-\left(\frac{2 D}{2}\right)^{4}\right]=\frac{15 \pi}{2} D^{4}
\end{gathered}
$$

Compatibility: $\Delta \phi_{1}+\Delta d_{2}=0$

$$
\begin{aligned}
\frac{T_{1} L}{G \frac{T}{2} b^{4}} & =-\frac{3 T_{2} L}{G-\frac{15 \pi}{2} D^{4}} \\
T_{1} & =-\frac{1}{5} T_{2}
\end{aligned}>T_{0}+T_{2}-\left(-\frac{1}{5} T_{2}\right)=0 \Rightarrow T_{2}=-\frac{5}{6} T_{0}
$$

e) Determine the change in angle of connector C in terms of the applied torque (T_{0}), L, G, and/or
D.

$$
\begin{aligned}
& \phi_{C}=\phi_{B}+\Delta \phi_{1} \quad \phi_{B}=0 \\
& \phi_{C}=\Delta \phi_{1} \\
& \phi_{C}=\frac{T_{1} L}{G I_{p 1}}=\frac{\frac{1}{6} T_{0} L}{6 \frac{\pi}{2} D^{4}}=\frac{T_{0} L}{3 G \pi D^{4}}
\end{aligned}
$$

February 28, 2024

Name (Print) \qquad
(Last)
(First)
f) Draw the stress elements for points a and b on the structure and determine the magnitude of the shear stress at a and b in terms of the applied torque $\left(\mathrm{T}_{0}\right), \mathrm{L}, \mathrm{G}$, and/or D .
a

$$
\left|\tau_{b}\right|=\frac{T_{2}(2 D)}{\frac{15 \pi}{2} D^{4}}=\frac{2 T_{0}}{9 \pi \Delta^{3}}
$$

Name
(Print)

PROBLEM \#3 (25 Points): Beam AE is supported by a roller at C and a pin at E. It is subject to a distributed load of $500 \mathrm{lb} / \mathrm{ft}$ in the segment AB , and a concentrated moment of $2000 \mathrm{lb} \cdot \mathrm{ft}$ at D .

a) Determine the reactions at C and E . Draw the shear force and bending moment distributions in the given diagrams in Fig. 3.1.
FAD:

Equcliblum: $F_{C}+F_{E}-1000=0$ $\bar{Z} M_{E}=1000 \cdot 8-F_{C} \cdot 5+2000=0$ $F_{C}=200 \mathrm{cbs} . F_{E}=-\log \mathrm{lbs}$
b) The beam has a triangular cross section shown below, where $h=6 \mathrm{in}$. Determine the maximum tensile flexural stress and maximum compressive flexural stress in the beam. (Hints: $1 \mathrm{ft}=12 \mathrm{in}$. The second area moment of the cross section is $I_{z}=\frac{1}{36} h^{4}$).
\qquad

$$
\sigma=-\frac{M y}{I}
$$

(Print)
(Last)

Maximum moment:

c) Points M and N are located at the cross-section D of the beam and their positions are shown in the above figure. Determine the shear stress at the two points.

$$
\begin{aligned}
& \text { sheer shes at } N=\quad \tau_{N}=0 \\
& \text { At } M \text { : } \quad I=\frac{V Q}{I t}, \quad V=100 \mathrm{cbs} \\
& Q=A^{*} \cdot y^{*}=\frac{1}{2} \times 4 \times 4 \cdot \frac{1}{3} \times 4=\frac{32}{3} \mathrm{in}^{3} \\
& I=36 \mathrm{in}^{4}, \quad t=4 \mathrm{in} \\
& \quad \tau_{M}=\frac{100 \cdot \frac{33}{3}}{36 \cdot 4}=74.07 \mathrm{ch}^{3} / \mathrm{m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& M_{\text {max }}=-3000 \mathrm{lb} \cdot \mathrm{ft} \\
& =-36000 \text { lain } \\
& \text { Fig. 3.2. Cross section } \\
& I=\frac{1}{36} h^{4}=\frac{1}{36} \cdot 6^{4}=36 \text { in }^{4} \\
& \text { Max tension: }\left(\sigma_{T}\right)_{\text {max }}=-\frac{-36000.4}{36}=4000 \mathrm{co} / \mathrm{in}^{2} \\
& \text { max Compression: }\left(\sigma_{c}\right)_{\max }=-\frac{36000 \cdot(-2)}{36}=-2000 \mathrm{ub} / \mathrm{in}^{2}
\end{aligned}
$$

Exam 1
February 28, 2024

PURDUE
UN IVERSITY
Name (Print) \qquad
(Last)
(First)

PROBLEM \#4 (25 points):

Part A ($\mathbf{6}$ points): The plane stress elements shown below have stresses in the directions shown, but no stresses in the z directions. The Poisson's ratio is between 0 and 0.5 ($0<v<0.5$).

$$
e_{x=2}=-=(x-2(y)
$$

(i) (2 points) For stress state A: In the absence of temperature changes, circle whether each of the strains are $<0,=0$, or >0 : $\mathcal{E}_{x}=\frac{1}{\epsilon}\left(T_{0}+\sigma_{0}\right)$

$\varepsilon_{2}=\hat{E}\left(v_{2}-\nu\left(x_{2}+r^{2}\right)=0\right.$
(ii) (2 point) For stress state A: If the temperature is increased, circle whether each of the strains are $<0,=0$, or >0 :

(iii) (2 points) For stress state B: In the absence of temperature changes, what condition would enable the strain in the x direction to be zero (circle one)?

$$
\begin{aligned}
& v=0 \\
& v=0.1 \\
& v=0.25 \\
& v=0.33 \\
& v=0.5 \\
& v=1.0
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon_{x}=\frac{1}{E}\left(T_{x}-\nu\left(r_{y}+\sigma_{2}\right)\right) \\
& 0=\frac{1}{E}\left(\sigma_{0}-\nu\left(4 \sigma_{0}\right)\right) \\
& 0=1-4 y \\
& \nu=\frac{1}{4}
\end{aligned}
$$

Exam 1
February 28, 2024

PURDUE

Name (Print)
(Last)
(First)
Part B (3 points):

(a)

(b)

(3 points) For transverse loading in the y direction, choose the correct order for the second area moments of the cross sections of beams a, b, and c :

$$
\begin{aligned}
& I_{a}>I_{b}>I_{c} \\
& I_{b}>I_{c}>I_{a} \\
& I_{c}>I_{a}>I_{b} \\
& I_{c}>I_{b}>I_{a}
\end{aligned}
$$

 the centroid than (b)

(c) has move
Calculations:

$$
\begin{aligned}
& I_{0}=\frac{(10 b)(10 b)^{3}}{12}-2\left[\frac{(4 b)(6 b)^{3}}{12}\right]=689 . \overline{3} b^{4} \\
& I_{b}=\frac{(10 b)(10 b)^{3}}{12}-2\left[\frac{(6 b b)(4 b)^{3}}{12}+(6 b b)(4 b)(3 b)^{2}\right]=337 . \overline{3} b^{4} \\
& I_{c}=\frac{(10 b)(10 b)^{3}}{12}-\frac{(2 b b)(6 b)^{3}}{12}=797 . \overline{3}
\end{aligned}
$$

Name (Print) \qquad
(Last)
Part C (4 points): Two beams (f) and (g) with cylindrical cross-sections have the same loading conditions but are made of different materials. Point h is at the most positive point of the crosssection in the y-direction.

(i) (2 points) What is the relationship between the flexural stresses of the beams at point h (circle one):

$$
\sigma_{\mathrm{f}}(\mathrm{~h})=\sigma_{\mathrm{g}}(\mathrm{~h})=0
$$

(ii) ($\mathbf{2}$ points) What is the relationship between the shear stresses of the two beams at point h (circle one):

sheer and moment do not depend

On

beams $\Rightarrow \sigma_{f}(h)=\sigma_{g}(h)$ and $\tau_{f}(h)=\tau_{g}(h)$

Name (Print) \qquad
(Last)
(First)
Part D (4 points): A stress-strain curve is shown below for steel.

(4 points) Indicate which of the following terms correspond with the points $\mathrm{k}, \mathrm{m}, \mathrm{n}$ and the regions $\mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}$ in the diagram of the stress strain curve above:

Necking region: t
Ultimate stress: m
Yield stress: K
Elastic region:

Name (Print)

(Last)

Part E (3 points): In the planar truss below with three members, what angles are used in the equations for the elongation of each member?

$$
\begin{aligned}
& \theta_{1}=0^{\circ} \\
& \theta_{2}=270^{\circ} \\
& \theta_{3}=150^{\circ}
\end{aligned}
$$

Name (Print) \qquad
(Last)
Part F (5 points): A torsion assembly has a bimetallic torsion member from B to C, a solid torsion member from C to D , and a torque of T_{o} applied at D .

If the shear modulus of member (1) was increased:
(i) ($\mathbf{2}$ points) The maximum shear stress in (3) would (circle one):

Increase

Decrease
(ii) ($\mathbf{3}$ points) The maximum shear stress in (2) would (circle one):

ME 323 - Mechanics of Materials

Exam 1
February 28, 2024

