Problem 1 (10 points):
Figure 1 shows an assembly consisting of an aluminum shell ($\left.\mathrm{E}_{\mathrm{Al}}=10.6 \times 10^{6} \mathrm{psi}, \alpha_{\mathrm{Al}}=12.9 \times 10^{-6} /{ }^{\circ} \mathrm{F}\right)$ fully bonded to a steel core ($\left.\mathrm{E}_{\mathrm{s}}=29 \times 10^{6} \mathrm{psi}, \alpha_{\mathrm{s}}=6.5 \times 10^{-6} /{ }^{\circ} \mathrm{F}\right)$. The assembly is unstressed initially. The assembly is now compressed by applying a force P such that its length decreases by 0.01 inch. Considering axial effects only (neglect radial expansion/contraction),
a) Determine the force P
b) Keeping the change in length of the assembly fixed (i.e. length decreases by 0.01 inch from its original value), determine the change in temperature $\Delta \mathrm{T}$ to the assembly which leads to the axial stress in aluminum to be zero again. (Hint: the applied force P might change accordingly)
c) Upon applying the temperature change in the previous step, determine the resulting axial stress and axial strain in aluminum shell and steel core.

Figure 1: Setup for problem 1

Problem 2 (10 points):
A composite shaft is made up of elements 1, 2, and 3 (each having shear modulus G). Elements 2 and 3 are tubular shafts joined together by rigid connector C. Element 1 is a solid core that connects between a fixed wall at B with element 3 at rigid connector D. Element 1 is NOT joined to connector C and passes through a hole in C (refer to figure 2). Torques T_{0} and $2 \mathrm{~T}_{0}$ act on D and C respectively. Determine the maximum shear stress in each shaft because of this loading. You may express your answers in fractions using the given variables.

Figure 2: Composite shaft for problem 2

Problem 3 (10 points):

In order to record the rotation of shaft A in digital form, a coder F is connected to it with the help of a gear train as shown in figure 3. The gear train consists of 4 gears and 3 solid shafts of diameter d. Two gears have radius r , while the other two have radius nr. Given that the rotation of the coder F is prevented, determine the angle through which end A rotates in terms of $T, 1, G, I_{p}$, and n.

Figure 3: Coder assembly for problem 3.

Problem 4 ($2.5+2.5$ points):
For the setup shown in figure 4, the rod has $\alpha=12.5 \times 10^{-6} /{ }^{\circ} \mathrm{C}$. $\mathrm{E}=200 \mathrm{GPa}$ and is strongly fitted between the wall and the spring. If the rod is heated by $20^{\circ} \mathrm{C}$,
4.1 The compression in the spring is:
a) 0.125 mm
b) 0.250 mm
c) 0.750 mm
d) 0.600 mm
4.2 The stress induced in the rod is:
a) -0.0992 MPa
b) -0.0796 MPa
c) -0.0397 MPa
d) -0.0636 MPa

Figure 4: Side view of the setup for Problem 4

