ME323 Mechanics of Materials

Exam 1 - Equation sheet

$$
\sigma_{\mathrm{avg}}=\frac{F_{N}}{A}, \quad \tau_{\mathrm{avg}}=\frac{V}{A}
$$

Generalized Hooke's law:

$$
\begin{gathered}
\varepsilon_{x}=\frac{1}{E}\left[\sigma_{x}-\nu\left(\sigma_{y}+\sigma_{z}\right)\right]+\alpha \Delta T \\
\varepsilon_{y}=\frac{1}{E}\left[\sigma_{y}-\nu\left(\sigma_{x}+\sigma_{z}\right)\right]+\alpha \Delta T \\
\varepsilon_{z}=\frac{1}{E}\left[\sigma_{z}-\nu\left(\sigma_{x}+\sigma_{y}\right)\right]+\alpha \Delta T \\
\gamma_{x y}=\frac{1}{G} \tau_{x y}, \quad \gamma_{x z}=\frac{1}{G} \tau_{x z}, \quad \gamma_{y z}=\frac{1}{G} \tau_{y z} \\
G=\frac{E}{2(1+v)} \\
\sigma_{x}=\frac{E}{(1+\nu)(1-2 \nu)}\left[(1-\nu) \varepsilon_{x}+\nu\left(\varepsilon_{y}+\varepsilon_{z}\right)-(1+\nu) \alpha \Delta T\right] \\
\sigma_{y}=\frac{E}{(1+\nu)(1-2 \nu)}\left[(1-\nu) \varepsilon_{y}+\nu\left(\varepsilon_{x}+\varepsilon_{z}\right)-(1+\nu) \alpha \Delta T\right] \\
\sigma_{z}=\frac{E}{(1+\nu)(1-2 \nu)}\left[(1-\nu) \varepsilon_{z}+\nu\left(\varepsilon_{x}+\varepsilon_{y}\right)-(1+\nu) \alpha \Delta T\right]
\end{gathered}
$$

Axial deformations:

$$
\begin{aligned}
e_{A B} & =u_{B}-u_{A} \\
\text { Varying properties: } \quad e & =\int_{0}^{L} \frac{F}{A E} d x+\int_{0}^{L} \alpha \Delta T d x \\
\text { Constant properties: } \quad e & =\frac{F L}{A E}+\alpha \Delta T L \\
e & =u \cos (\theta)+v \sin (\theta)
\end{aligned}
$$

Torsional deformations:

$$
\begin{aligned}
\qquad \phi_{A B} & =\phi_{B}-\phi_{A} \\
\text { Varying properties: } \quad \phi & =\int_{0}^{L} \frac{T(x)}{G(x) I_{p}(x)} d x \\
\text { Constant properties: } \quad \phi & =\frac{T L}{G I_{p}}
\end{aligned}
$$

$$
\gamma=\rho \frac{d \phi}{d x}, \quad \tau=G \rho \frac{d \phi}{d x}, \quad \gamma=\frac{\rho T}{G I_{p}}, \quad \tau=\frac{\rho T}{I_{p}}
$$

where $\quad I_{p}=\int_{A} \rho^{2} d A, \quad I_{p}=\frac{\pi r^{4}}{2}($ solid $), I_{p}=\frac{\pi}{2}\left(r_{o}^{4}-r_{i}^{4}\right)$ (hollow)

Beam Flexural and Shear Stresses:
$\frac{d V}{d x}=p(x) \quad \frac{d M}{d x}=V(x) \quad M=E I v^{\prime \prime} \quad \Delta V=P \quad \Delta M=-M_{0}$
$\sigma(x, y)=\frac{-E y}{\rho}=\frac{-M_{z z} y}{I_{z z}} \quad I_{z z}=\frac{b h^{3}}{12}$ (rectangle), $I_{z z}=\frac{\pi r^{4}}{4}$ (circle)
$\tau(x, y)=\frac{V Q}{I_{z z} t}=\frac{V A^{*} y^{*}}{I_{z z} t}$,
$\tau_{\text {max }}=\frac{3 V}{2 A}$ (rectangle),
$\tau_{\text {max }}=\frac{4 V}{3 A}$ (circle)

Parallel Axis Theorem

$\mathbf{I}_{\mathbf{B}}=\mathbf{I}_{\mathbf{O}}+\mathbf{A d}^{\mathbf{2}}{ }_{\mathrm{OB}}$

