Problem 1.1 (10 points)

ABCD represents a frame attached to the wall at A, with the free end (D) subjected to two forces: 1) W acting in the negative Z direction and 2) P acting in the positive X direction.

- (a) Calculate the internal resultants, i.e, forces and moments developed at the centroid of the cross sections-
 - A, and
 - B
- (b) Does the internal resultant force vary as you move along the line segment AB? What about along line segment BC?

Fig 1.

Problem 1.2(10 points)

Two wooden blocks of identical square cross section (10 mm x 10 mm) are glued together along the plane AC as shown in the figure below. The dimension of the entire setup is 10 mm x 10 mm x 100 mm.

- (a) Assuming that the glue can withstand a maximum shear stress of 10,000 Pa, calculate the maximum force P that can be applied at the end of the wooden blocks.
- (b) A new glue was tested which can withstand a maximum normal stress of 5,000 Pa and shear stress of 3500 Pa. What is the maximum load that can be applied?

Problem 1.3 (10 points)

Frame assembly is subject to the loading as shown in Fig 3. The bars ABC and BD are rigid and the connections at A, B, and D are pin joints.

- a) Determine the magnitude of the internal shear forces in the pin joints and identify the pin that carries the maximum magnitude load.
- b) If the area and the shear strength of each pin is A and τ, respectively, then express the maximum value of P possible without failure in terms of τ and A. Assume that pins B and D are double-sided and the pin A is single-sided in your calculations.

Fig 3

Problem 1.4 Conceptual (2.5+2.5 points)

(a) The rod shown below has a rectangular cross section and is made of a material with Young's modulus E and positive Poisson's ratio v. It has dimensions L > b > h and it is subjected to a tensile load P in the x direction, as shown.

Select the correct statement. And justify your stance.

- (a) $|\Delta h| > |\Delta b|$
- (b) $|\Delta h| < |\Delta b|$
- (c) $|\Delta h| = |\Delta b|$
- (d) Insufficient information. Depends on the value of Poisson's ratio.
- (b) Bar ABC is supported by a pin joint at point A and loaded by a vertical force P at point C. Bar ABC is also connected to bar BD via a pin joint at B which in turn is supported by a pin joint at D. Bar BD is oriented along the x axis.

Select the zero internal resultant(s). And justify your stance.

- (a) Normal force F_x
- (b) Shear force V_y
- (c) Bending moment M_z
- (d) All internal resultants are non zero