Spring 2024

Problem 1 (10 points):

Dwight Schrute from The Office US is attempting his tightrope stunt again and wants to present a spectacle (Figure 1.1 left). He has modified the high-wire design in a Mechanics textbook and plans to make it taller. His design is as described in figure 1.2. The high-wire is attached to a rigid vertical beam AC and is kept taut by a tensioner cable BD. At C, the beam is attached by a 20 mm diameter bolt to the bracket (also shown in the figure). The tension in the wire is 7 kN . The maximum allowable shear stress in the bolt C is 31.25 MPa . As his friend, you are asked to help him figure out the maximum length L that he can consider. Assume the high-wire to be horizontal and neglect the weight of AC.
[Note: Please do not try this at home]

Figure 1.1: Left: Dwight's tightrope stunt; Right: His failed attempt.
[Image courtesy: PeacockTV]

Figure 1.2: Design of the high-wire setup.

Problem 2 (10 points):

Links BC and DE are connected to a rigid member ACD as shown in figure 2. A load P is applied to the structure at A. Each pin has a diameter of 10 mm and experiences single shear. The material strength of the pins is $\tau=250 \mathrm{MPa}$ and the material strength in tension of the links is $\sigma=500 \mathrm{MPa}$. Both BC and DE have a cross-sectional area of $125 \mathrm{~mm}^{2}$. Calculate the maximum P so that the structure does not fail.

Figure 2: Structure for Problem 2

Problem 3 (10 points):

A biaxial loading, as shown in figure 3, acts on a homogeneous plate ABCD . Let $\sigma_{z}=\sigma_{0}$. The plate must not have a change in length in the x-direction (or $\varepsilon_{x}=0$). The plate has a modulus of elasticity E and Poisson's ratio v. Determine:
a) The required magnitude of σ_{x} in terms of the given parameters,
b) The ratio $\sigma_{0} / \varepsilon_{\mathrm{z}}$.

Figure 3: Loading conditions for plate ABCD

Problem 4 (2.5 points + 2.5 points):

I. You are given two bars of the same length. One of the bars has a uniform circular cross-section with diameter d and the other has a tapered circular cross-section with end diameters d_{1} and d_{2} as shown in figure 4.1. If they are subjected to the same axial pull, determine the criteria for them to have the same elongation.
a. $\quad d=\frac{d 1+\mathrm{d} 2}{2}$
b. $\quad d=\sqrt{ }(d 1 \times d 2)$
c. $d=\sqrt{ } \frac{(d 1 \times d 2)}{2}$
d. $\quad d=\sqrt{ } \frac{(d 1+d 2)}{2}$

Tapered cross-section

d_{2}

Uniform cross-section

Figure 4.1: Tapered and uniform cross-section
II. Consider a rigid beam supported in a horizontal position by two rods as shown in figure 4.2. The steel rod has a cross-sectional area of $1 \mathrm{~cm}^{2}$ and Elasticity modulus of 200 GPa , while those of aluminum rod are $2 \mathrm{~cm}^{2}$ and 100 GPa respectively. For the beam to remain horizontal,
a. The forces on both sides should be equal.
b. The force on aluminum rod should be twice the force on steel rod.
c. The force on steel rod should be twice the force on aluminum rod.
d. The force P must be at the center of the beam.

Figure 4.2: Rigid Beam for problem 4.II

