Summary: Stress-based failure theories

PROBLEM: Given a state of plane stress, with the xy-components of stress given by: σ_x , σ_y and τ_{xy} . What is the factor of safety for this state of stress?

DUCTILE material w/ yield strength σ_v

Maximum shear stress theory (MSS) $FS_{MSS} = \frac{\sigma_Y/2}{2}$

 $\tau_{max\,abs}$

Maximum distortional energy (MDE) $FS_{MDE} = \frac{\overline{\sigma_Y}}{\sqrt{\sigma_{P1}^2 - \sigma_{P1}\sigma_{P2} + \sigma_{P2}^2}}$

BRITTLE material w/ ultimate strengths $\sigma_{UT} < \sigma_{UC}$

Maximum normal stress theory (MNS)

Coulomb/Mohr theory •

