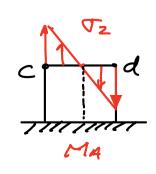
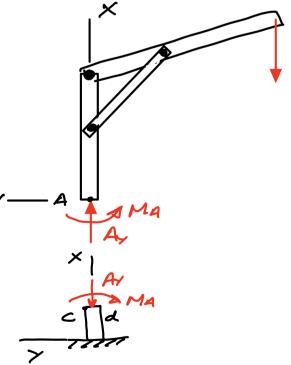
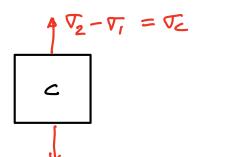

A crane is made up of a vertical column AB with a boom pinned to the column at B. The column has a tubular cross section of thickness t, as shown below. The boom supports a block with a weight of W. Determine the maximum tensile stress and maximum compressive stress near the base cross section at A when the boom is in the position shown.

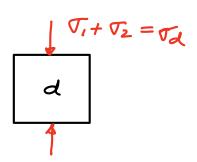



Equilibrium and internal resultants

ZMA = -WL + MA = 0 => MA = WL

Stress distributions





Stress components

A = cross-sectional onea =
$$bh-(b-2t)(h-2t)$$

 $I_3 = z^{nd}$ area moment about z -axis
= $\frac{1}{12}hb^3 - \frac{1}{12}(h-2t)(b-2t)^3$

	@ c"	@ "d"
A	$\nabla_i = \frac{A}{A} = \frac{W}{A}$	$\nabla_i = \frac{A}{A} = \frac{W}{A}$
Ma	$T_2 = \frac{M_4 h/2}{I} = \frac{WLh}{2I}$	$ T_2 = \frac{M_4 h/2}{I} = \frac{WLh}{ZI} $

Mole: . If T27 T1, Tc= tensile

- If $\nabla_2 < \nabla_1$, $\nabla_c = compressive$, but less than ∇_d
- · To is ALWAYS compressive