
FEM Review

All elements have a modulus of E and a length of L. What is the value of the <u>third</u> row and third column of the stiffness matrix?

$$[K] = \frac{EA}{L} \begin{bmatrix} \frac{\lambda_1}{\lambda_1 + \lambda_2} & \cdots \\ \frac{\lambda_1 + \lambda_2}{\lambda_2 + \lambda_3} & \cdots \\ \vdots & \ddots \end{bmatrix}$$

$$k_2 = \frac{E(A+2A)}{2L} = \frac{3EA}{2L}$$
 $k_3 = \frac{2EA}{L}$

12. Thin-walled pressure vessels

Objectives:

To study the combined axial and hoop stress state in the sidewalls of cylindrical vessels and in spherical pressure vessels.

Background:

Relationship between the resultant normal force F due to constant normal stress σ acting over an area A:

$$\sigma = \frac{F}{A}$$

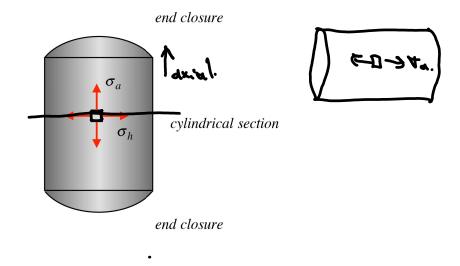
Lecture topics:

- a) Axial stress.
- b) Hoop stress.
- c) Combined state of stress.

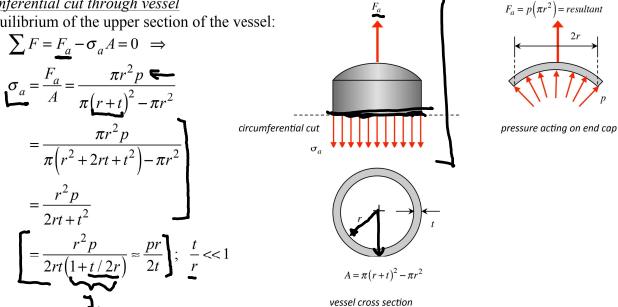
Lecture Notes

We have so far understood the stresses, and deformations of thin rods/beams in (a) axial deformation, (b) torsion, and (c) in bending. In this class we will consider one more type of structure that is more "two-dimensional" compared the one-dimensional beam models.

Thin-walled pressure vessels have a number of applications:


- Vacuum chambers 🗸
- Pressure vessels used for storing various kinds of fluids under high pressure
- Natural gas containers, hot air balloons, coke cans, gel and aerosol cans, chemical and nuclear reactors, oil refining containers, soap bubbles
- Liquid fuel containers in space vehicles
- Submarine hulls

To prevent the explosion or breakage of these pressure vessels it is important to design these to keep stresses within an acceptable level.


Cylindrical pressure vessels

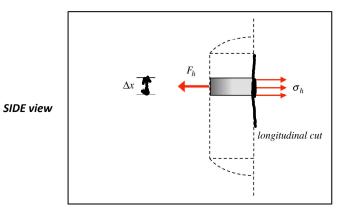
Consider a thin-walled circular-cross section pressure vessel with an internal pressure of p, inner radius r and wall thickness t.

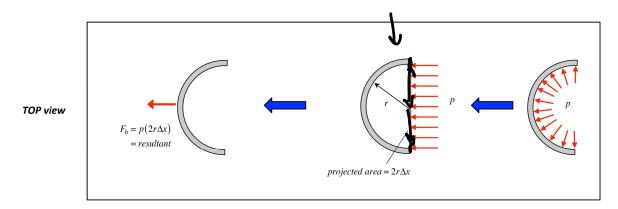
Circumferential cut through vessel

For equilibrium of the upper section of the vessel:

 σ_a is the axial component of normal stress in the vessel due to the internal pressure.

Longitudinal cut through vessel

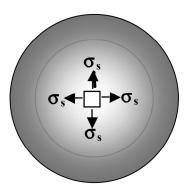

For equilibrium of the left portion of a hoop section of the vessel (of height Δx):

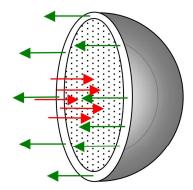

$$\sum F = F_h - \sigma_h A = 0 \implies$$

$$\sigma_h = \frac{F_h}{A} = \frac{2rp\Delta x}{2t\Delta x} = \frac{pr}{t}$$

 $\sigma_h = \frac{F_h}{A} = \frac{2rp\Delta x}{2t\Delta x} = \frac{pr}{t}$ $\sigma_h \text{ is the "hoop" component of normal stress}$ in the vessel due to the internal pressure.

Note that the axial component of stress is exactly half of the hoop component of stress in a cylindrical pressure vessel.



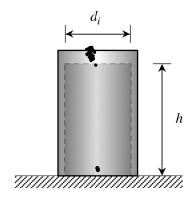



Spherical pressure vessels

Consider a thin-walled spherical pressure vessel with an internal pressure of p, inner radius r and wall thickness t. Using an equilibrium relationship on the hemispherical section of the tank gives a normal stress of:

$$\sigma_{s} = \frac{pr}{2t}$$

Example 12.1

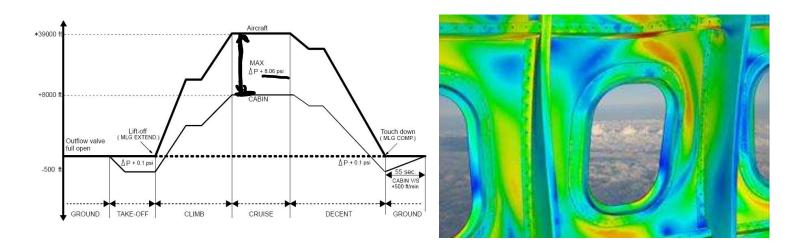

A steel propane tank for a barbecue grill has a 12-in inside diameter and a wall thickness of 1/8 in. The tank is pressurized to 200 psi. Determine the axial and hoop components of stress in the wall of the tank.

$$A^{\mu} = \frac{(1/8)}{500(9)}$$

Example 12.2

A vertical standpipe has an inside diameter of $\underline{d_i} = 3m$ and is filled with water to depth of h = 5m. If the allowable hoop stress is 80MPa, what is the minimum wall thickness of the tank?

$$\nabla h = \frac{\rho r}{t}$$


$$\Rightarrow t_{min} = \frac{\rho r}{t_{ailow}}$$

$$t_{min} = \frac{\rho q h}{\tau}$$

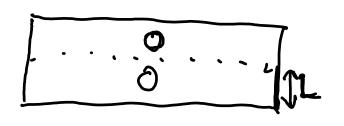
$$\nabla_{ailow}$$

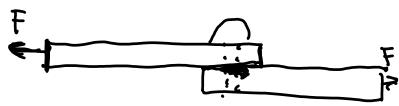
$$t_{min} = (1000)(9.8)(5)(1.5)$$

80x106 Pa.

Airplane as a Pressure Vessel

https://aviation.stackexchange.com/questions/19291/whatis-the-pressure-in-a-civil-aircraft-fuselage-at-flight-ceiling

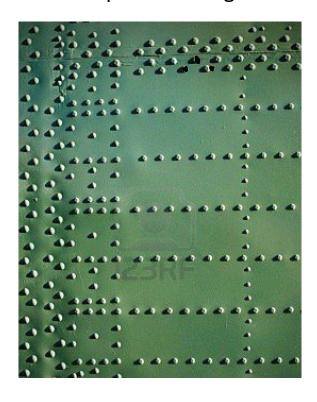



An airplane exhibits a pressure difference of 56 kPa in the fuselage at 39 000 ft cruising altitude. The radius of the fuselage is 2 m. The tensile yield strength of aircraft grade aluminum is 276 MPa.

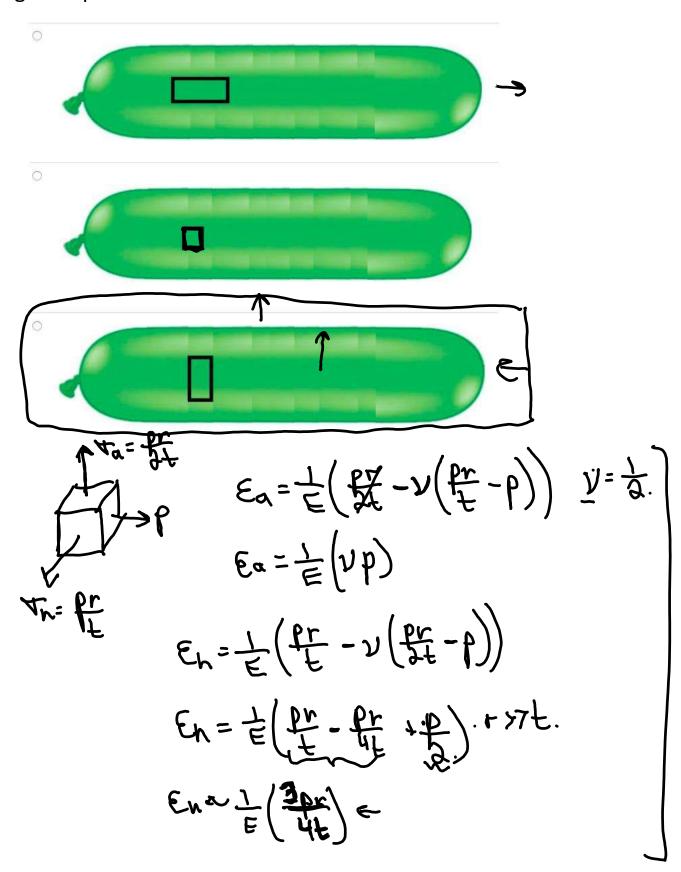
- a) What thickness is required to achieve a factor of safety of 2.5?
- b) Rivets hold the fuselage together. The rivets have a diameter of 3.175 mm and a shear strength of 95 MPa. What density of rivets are required to reach a factor of safety of 2.5?

$$\frac{(56\times10^{3})(2)}{+}=\frac{276\times10^{6}P_{q}}{2.5.}$$

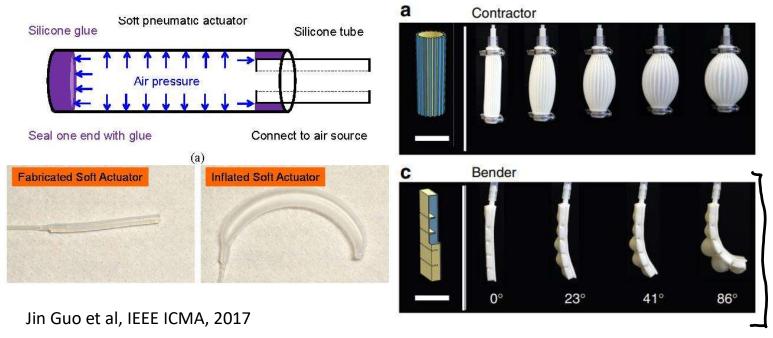
t=0.001 m=1 mm.E


Trivet Arivet = Th An

$$\left(\frac{2.5}{L^2}\right)\mu L_3 = L^{\mu}\left(0.001\right)\Gamma$$


$$L = \left(\frac{z_{5}}{2.5}\right) \pi r^{2} \left(\frac{4r(0.001)}{1}\right)$$

L = 0.0027m = 2.7 mm.

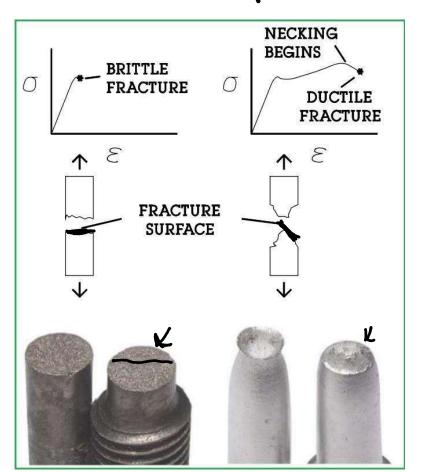

Example rivet pattern for airplane fuselage.

A square was drawn on a cylindrical balloon before inflating it. The balloon was then inflated. Which one is the correct shape resulting from the original square after inflation?

Pneumatic Actuators

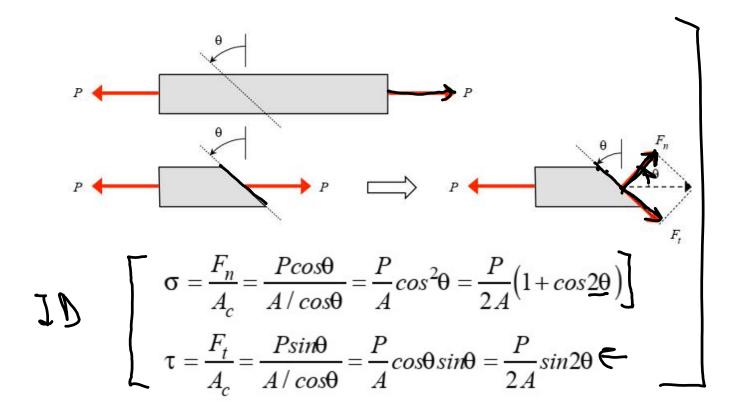
Schaffner et al, Nat Comm, 9:878, 2018.

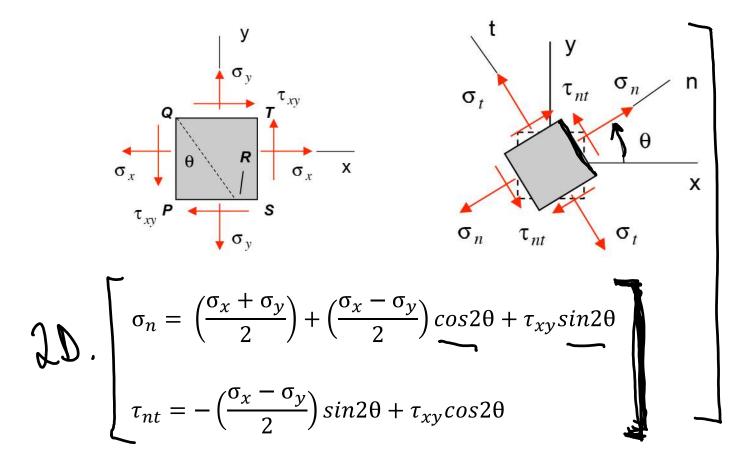
- 1. Starting from the equations for stresses in chambers and the generalized strain equation, derive the relationships for the strain in the axial and hoop directions in a pressure vessel.
- **2.** For an elastomer with a Poisson's ratio of 0.5, what is the strain in the axial and radial directions as a function of pressure?
- **3.** How could you modify the materials properties or device structure ot improve the actuation strain and/or actuation stress in the axial direction?

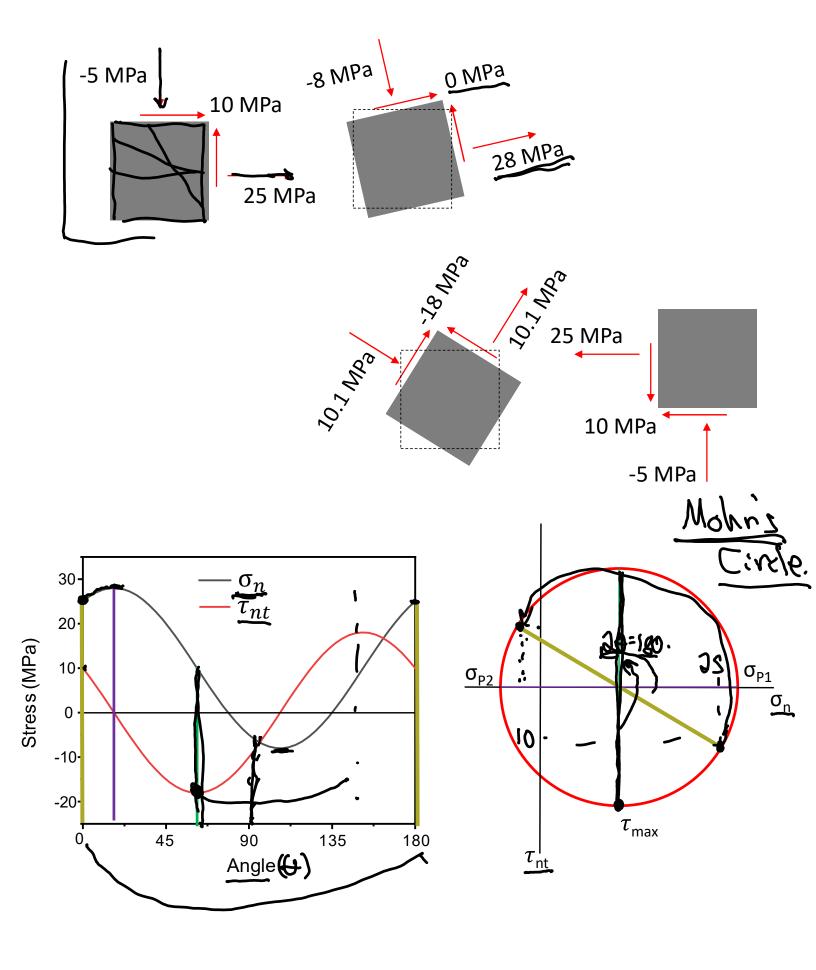

ME 323 - MECHANICS OF MATERIALS

Schedule for Fall 2023

PER	DATE	TOPIC	READING*	HWK DUE	
1 M	21-Aug	Introduction; Static equilibrium	Chap. 1		
2 W	23-Aug	Normal stress and strain; Mechanical properties	Chap. 2		
3 F	25-Aug	Shear stress and strain – direct shear	Chap. 3		
4 M	28-Aug	Stress – introduction to design of deformable bodies	Chap. 4		
5 W	30-Aug	Stress and strain – general definitions	Chap. 5		
6 F	1-Sep	Axial members – determinate structures	Chap. 6	HW 1	
M	4-Sep	Labor Day – no class	1		
7 W	6-Sep	Axial members – indeterminate structures	Chap. 6		
8 F	8-Sep	Axial members – planar trusses	Chap. 6	HW. 2	
9 M	11-Sep	Axial members – thermal effects	Chap. 7		
10 W	13-Sep	Torsion members – stresses in circular bars	Chap. 8		
11 F	15-Sep	Torsion members – statically determinate structures	Chap. 8	HW 3	
12 M	18-Sep	Torsion members – statically indeterminate structures	Chap. 8		
13 W	20-Sep	Beam stresses – equilibrium and flexural stresses	Chap. 10		
14 F	22-Sep	Beam stresses – flexural and shear stresses	Chap. 10	HW 4	
15 M	25-Sept	Review	-		
W	27 Sept	Examination 1, 8-10pm (no lecture on Wednesday)			
16 F	29-Sep	Beam stresses – shear stresses	Chap. 10		
17 M	2-Oct	Shear force/bending moment diagrams - determinate structures	Chap. 9		
18 W	4-Oct	Beam deflections – statically determinate structures	Chap. 11		
19 F	6 -Oct	Beam deflections – statically indeterminate structures	Chap. 11	HW 5	
M	9-Oct	October Break - no class			
20 W	11-Oct	Beam deflections – superposition methods	Chap. 11		
21 F	13-Oct	Energy methods – Castigliano's theorems	Chap. 16	HW. 6	
22 M	16-Oct	Energy methods – Castigliano's theorems	Chap. 16		
23 W	18-Oct	Energy methods – Castigliano's theorems	Chap. 16		
24 F	20-Oct	Energy methods – Castigliano's theorems	Chap. 16	HW 7	
25 M	23-Oct	Shear force/bending moment diagrams – indeterminate structures	Chap. 9		
26 W	25-Oct	Shear force/bending moment diagrams – indeterminate structures	Chap. 9		
27 F	27-Oct	Energy methods – introduction to finite element methods	Chap. 17	HW 8	
28 M	30-Oct	Review			
W	1-Nov	Examination 2, 8-10p.m. (no lecture on Wednesday)			
29 F	3-Nov	Energy methods – introduction to finite element methods	Chap. 17		
30 M	6-Nov	Thin-walled pressure vessels – axial and hoop stresses	Chap. 12 V		
31 W	8-Nov	Stress transformation – principal /maximum shear stresses	Chap. 13		
32 F	10-Nov	Stress transformation – Mohr's circle	Chap. 13	HW 9	
33 M	13-Nov	Stress transformation – absolute maximum shear stress	Chap. 13		
34 W	15-Nov	Stresses – combined loading	Chap. 14		
35 F	17-Nov	Stresses – combined loading	Chap. 14	HW 10	
36 M	20-Nov	Stresses – combined loading	Chap. 14		
W	22-Nov	Thanksgiving Vacation – no class			
F	24-Nov	Thanksgiving Vacation – no class	C1 1.7		
37 M	27-Nov	Failure analysis-stress theories	Chap. 15		
38 W	29-Nov	Failure analysis – stress theories	Chap. 15	11337 11	
39 F	1-Dec	Failure analysis – buckling	Chap. 18	HW. 11	
40 M	4-Dec	Practice with combined loadings and failure analysis			
41 W	6-Dec	Practice with combined loadings and failure analysis			
42 F	8-Dec	Review			
	TBA	Final Examination			


^{*} Reading assignments from lecture book


Lecture 4.



Preview of Chapter 13

