Quiz 8-1:30 class - SOLUTION

Q1 - We use the following equation in our beam deflection calculations with the integration method:

$$
\theta(x)=\theta\left(x_{0}\right)+\frac{1}{E I} \int_{x_{0}}^{x} M(x) d x
$$

What are the origins of this equation? This equation originates from the Euler-Bernoulli hypothesis that plane sections on the beam cross-section remain plane and perpendicular to the neutral plane: $M=E I / \rho$.
For small rotations of the beam: $\frac{1}{\rho} \approx \frac{d^{2} v}{d x^{2}}=\frac{d \theta}{d x}$.

Q2 - We also use the following equation in our beam deflection calculations with the integration method:

$$
v(x)=v\left(x_{0}\right)+\int_{x_{0}}^{x} \theta(x) d x
$$

What are the origins of this equation? This equation originates from fundamental calculus for the derivative of a function in terms of single independent variable: $\theta \approx$ $\tan \theta=\frac{d v}{d x}$.

Q3 - Consider the beam shown below:

$v(0)=0$; zero displacement at left end $M(0)=0$; no applied/reactive couple at left end
$v(a)=0 ;$ zero displacement at roller
$V(2 a)=0$; no applied or reactivve force at right end $\theta(2 a)=0$; zero rotation at right end

