Conceptual question 10.1

The distribution of the normal stress σ at the cross section of a beam varies linearly with the coordinate y and is constant in its depth (in z-direction). Let F represent the resultant normal force due to this normal stress on the cross section. Circle the correct answer:
a) $F>0$ (tensile)
b) $F=0$
c) $F<0$ (compressive)

$$
F=\int \sigma(f) d y=A_{1}-A_{2}>0
$$

Conceptual question 10.8

Consider the cantilevered beam above with the concentrated load P at end D. Consider the axial components of stress at points "a" and "b" (σ_{a} and σ_{b}, respectively) at location C along the beam. Circle the response below that most accurately describes the relative sizes of the magnitudes of these two stresses:
a) $\left|\sigma_{a}\right|>\left|\sigma_{b}\right|$
b) $\left|\sigma_{a}\right|=\left|\sigma_{b}\right|$
c) $\left|\sigma_{a}\right|<\left|\sigma_{b}\right|$

$$
\left.\begin{array}{c}
\left|\sigma_{a}\right|=\frac{M \mid d_{a}}{I} \\
\left|\sigma_{b}\right|=\frac{|m| d_{a}}{I}
\end{array}\right\} \begin{gathered}
\text { since } d_{a}>d_{b} \Rightarrow \\
\left|\sigma_{a}\right|>\left|\sigma_{b}\right|
\end{gathered}
$$

