Problem B
Find the vertical deflection of the beam at point B and the angle of rotation of the beam at B. Let E and I be the Young's modulus and second area moment of the beam cross section, respectively, of the beam. Let $L=2 a$. Ignore shear effects.

Equilibrium
(i) $\sum M_{A}=M_{c}-M_{A}+C_{y}(2 a)-\left(w_{0} a\right) \frac{a}{2}=0$
(2) $\sum F_{y}=A_{y}+C_{y}-w_{0} a=0$

x

C

- Tudefirminhte
- Will choose MA and Ay as redundant loads
\therefore
(l) $\left\{C_{y}=-A_{y}+w_{0} a\right.$
(2) $1 M_{C}=M_{A}-\left(-A_{y}+w_{0} a\right)(2 a)+\frac{1}{2} w_{0} a^{2}=M_{A}+2 a A_{y}-\frac{3}{2} w_{0} a^{2}$
in terms of redundant loads
Strain energy
- Section $A B-(1)$

$$
\begin{aligned}
& \sum M_{H}=M_{1}-A_{y} x+\left(w_{0} x\right) \frac{x}{2}-M_{4} \\
& C M_{1}(x)=A_{y} x-\frac{1}{2} w_{0} x^{2}+M_{4}
\end{aligned}
$$

- Section $B C$ - (2)

$$
\begin{aligned}
& \sum M_{k}=M_{2}-A_{1} x+\left(w_{0} a\right)\left(x-\frac{a}{2}\right)-M_{a} \\
& \longrightarrow M_{2}(x)=\left(A_{1}-w_{0} a\right) x+\frac{1}{2} w_{0} a^{2}+M_{4}
\end{aligned}
$$

$$
\begin{aligned}
\therefore U & =U_{1}+\sigma_{2} \\
& =\frac{1}{2 E I} \int_{0}^{a} M_{l}^{2}(x) d x+\frac{1}{2 E I} \int_{a}^{2 a} M_{2}^{2}(x) d x
\end{aligned}
$$

Apply Castigliano
Since A_{y} and MA are our redundant loads, we can unite the following:

$$
\text { - } O=\frac{\partial \tau}{\partial A_{y}}=\frac{1}{d I} \int_{0}^{a} M_{1} \frac{\partial M_{1}}{\partial A_{1}} d x+\frac{1}{E I} \int_{a}^{2 a} M_{z} \frac{\partial M_{2}}{\partial A_{y}} d x
$$

w/ $\quad \frac{\partial M_{1}}{\partial A_{y}}=x \quad \xi \frac{\partial M_{2}}{\partial A_{y}}=x$

$$
\begin{aligned}
\therefore 0= & \int_{0}^{a}\left(A_{y} x-\frac{1}{2} w_{0} x^{2}+M_{A}\right) x d x \\
& \quad+\int_{a}^{2 a}\left[\left(A_{y}-w_{0} a\right) x+\frac{1}{2} w_{0} a^{2}+M_{A}\right] \times d x \\
= & \frac{1}{3} A_{y} a^{3}-\frac{1}{8} w_{0} a^{4}+\frac{1}{2} M_{A} a^{2} \\
& +\frac{1}{3}\left(A_{y}-w_{0} a\right) \underbrace{\left[(2 a)^{3}-a^{3}\right]}_{7 a^{3}}+\frac{1}{4} w_{0} a^{2} \underbrace{\left[(2 a)^{2}-a^{2}\right]}_{3 a^{2}}+\frac{1}{2} M_{A} \frac{\left[(2 a)^{2}-a^{2}\right]}{3 a^{2}}
\end{aligned}
$$

$$
\begin{gather*}
0=\frac{8}{3} a^{3} A_{y}+2 a^{2} M_{4}-\frac{41}{24} a^{4} w_{0} \tag{3}\\
\cdot 0=\frac{\partial U}{\partial M_{A}}=\frac{1}{\nexists} \int_{I}^{a} \int_{0}^{2 a} M_{1} \frac{\partial M_{1}}{\partial M_{A}} d x+\frac{1}{E I} \int_{a} M_{2} \frac{\partial M_{2}}{\partial M_{A}} d x \\
w / \quad \frac{\partial M_{1}}{\partial M_{A}}=\frac{\partial M_{2}}{\partial M_{A}}=1 \\
\therefore=\int_{0}^{a}\left[A_{1} x-\frac{1}{2} w_{0} x^{2}+M_{A}\right] d x \\
\\
\quad+\int_{a}^{2 a}\left[\left(A_{4}-w_{0} a\right) x+\frac{1}{2} w_{0} a^{2}+M_{A}\right] d x \\
=
\end{gather*}
$$

(4) $0=2 a^{2} A_{y}+\frac{3}{2} a M_{A}-\frac{7}{6} a^{3} w_{0}$
\therefore we need to solve (3) and (4) for A_{y} and MA:
(5) $\left.\frac{8}{3} a A_{y}+2 M_{A}=\frac{41}{24} a^{2} w_{0}\right\}$ Solve for A_{y} and M_{A}
(6) $2 a A_{y}+\frac{3}{2} M_{A}=\frac{7}{6} a^{2} w_{0}$

Once By and MA are known from above, solve (1) ance(2) for c_{y} and ru.

Now that the reactions are known, we can then find the displacement at B. To do this, add dummy load, P_{d}, at B. Repeat process to determine the stain energy function for beam, T. To find displacement at B, use:

$$
\delta_{B}=\left.\frac{\partial \sigma}{\partial P_{d}}\right|_{P_{d}}=0
$$

