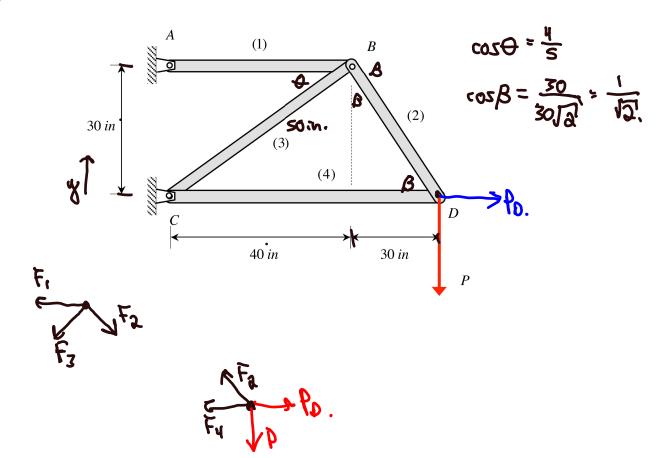

M	9-Oct	October Break - no class		
20 W	11-Oct	Beam deflections – superposition methods	Chap. 11	
21 F	13-Oct	Energy methods - Castigliano's theorems	Chap. 16	HW. 6
22 M	16-Oct	Energy methods - Castigliano's theorems	Chap. 16	
23 W	18-Oct	Energy methods - Castigliano's theorems	Chap. 16	
24 F	20-Oct	Energy methods - Castigliano's theorems	Chap. 16	HW 7
25 M	23-Oct	Shear force/bending moment diagrams - indeterminate structures	Chap. 9	dure.
20 141	25-001	5		adle:
26 W	25-Oct	Shear force/bending moment diagrams – indeterminate structures	Chap. 9	uu ₁ E.
			-	HW 8
26 W	25-Oct	Shear force/bending moment diagrams - indeterminate structures	Chap. 9	
26 W 27 F	25-Oct 27-Oct	Shear force/bending moment diagrams – indeterminate structures Energy methods – introduction to finite element methods	Chap. 9	

Castigliano's Review

Question 1:


In the beam, the displacement at B is found by:

- The partial derivative of U with respect to P.
- The partial derivative of U with respect to M.
- The partial derivative of U with respect to a dummy load.
- The partial derivative of U with respect to a dummy moment.

Problem D

Determine the vertical and horizontal deflection of the truss at joint D. All members of the truss have a cross-sectional area of A and are made of a material with a Young's modulus of E.

$$(\xi \xi)_{B} = -f_{1} - f_{3}(\xi) + f_{2}(\xi) = 0 \implies F_{1} = f_{1} + (\xi)_{1} = \xi f_{2}$$

$$(\xi \xi)_{B} = -f_{3}(\xi) - f_{3}(\xi) = 0 \implies F_{4} = f_{2} - f_{3}(\xi)_{1} = 0 \implies F_{4} = f_{2} - f_{3}(\xi)_{2} = 0 \implies F_{4} = f_{2} - f_{3}(\xi)_{2} = 0 \implies F_{5} = \sqrt{2}f_{5}$$

$$(\xi \xi)_{B} = -f_{1} - f_{3}(\xi)_{2} + f_{3}(\xi)_{2} = 0 \implies F_{4} = f_{2} - f_{3}(\xi)_{2} = 0 \implies F_{5} = \sqrt{2}f_{5}$$

$$(\xi \xi)_{B} = -f_{1} - f_{3}(\xi)_{2} + f_{3}(\xi)_{3} = 0 \implies F_{5} = \sqrt{2}f_{5}$$

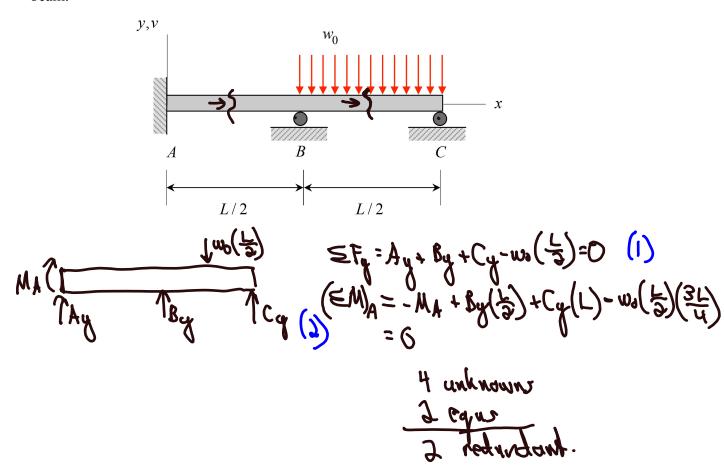
$$(\xi \xi)_{B} = -f_{1} - f_{3}(\xi)_{3} + f_{3}(\xi)_{3} = 0 \implies F_{5} = \sqrt{2}f_{5}$$

Mechanics of Materials

Strain Energy.

$$\frac{\partial F_1}{\partial P_0} = 0$$

$$\frac{\partial F_1}{\partial P_0} = 0 \qquad \frac{\partial F_8}{\partial P_0} = 0 \qquad \frac{\partial F_3}{\partial P_0} = 0 \qquad \frac{\partial F_4}{\partial P_0} = 1$$


$$\Lambda = -\left[\frac{9b}{30}\right]^{600}$$

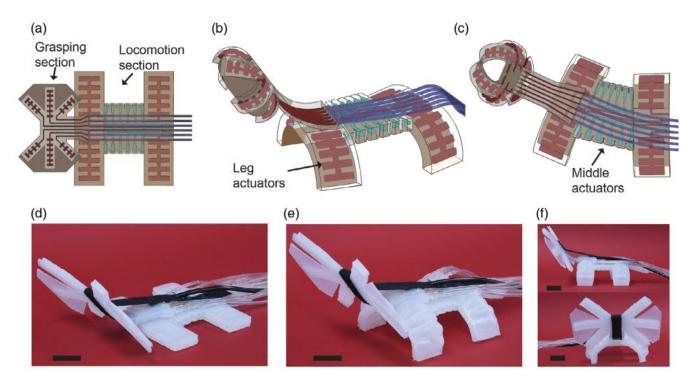
$$\frac{\partial F_1}{\partial F} = \frac{7}{7}$$

$$\frac{\partial F_1}{\partial P} = \frac{3}{4} \qquad \frac{\partial F_2}{\partial P} = \sqrt{2}, \qquad \frac{\partial F_3}{\partial P} = -\left(\frac{2}{3}\right) \qquad \frac{\partial F_4}{\partial P} = -1$$

Problem C

Determine the reactions at rollers B and C on the beam below. Let E and I be the Young's modulus and second area moment of the beam cross section, respectively, of the beam.

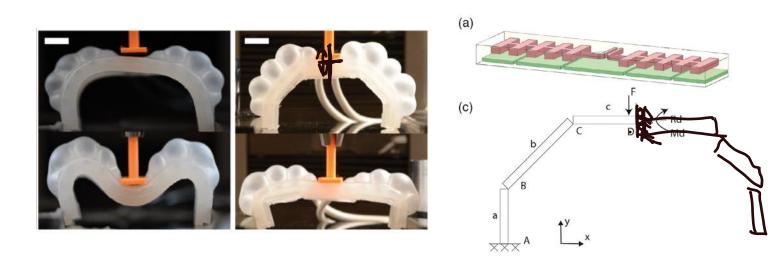
$$N'(x) = CA + m^0x.$$

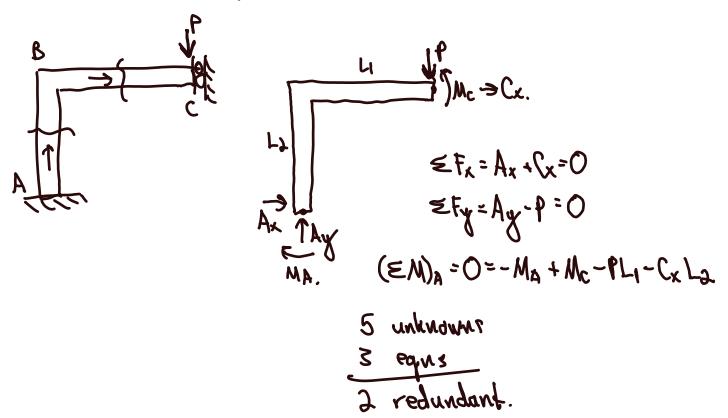

$$N'(x) = CA + m^0x.$$

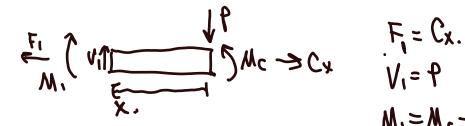
$$\frac{\partial \mathbf{B}^{A}}{\partial \Omega} = \Omega = \frac{EI}{I} \int_{0}^{0} W^{1} \frac{\partial \mathcal{B}^{A}}{\partial W} dx + \frac{EI}{I} \int_{0}^{1} W^{2} \frac{\partial \mathcal{B}^{A}}{\partial W^{2}} dx.$$

$$\frac{3b^{2}}{3M^{1}}=0 \qquad \frac{3b^{2}}{3M^{3}}=\left(x-h^{2}\right)$$

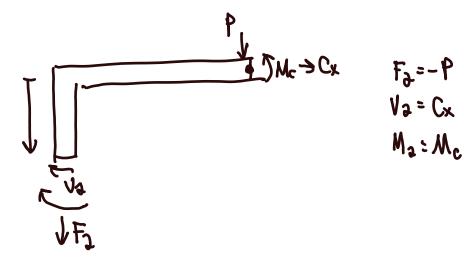
(3)
$$O = \frac{1}{E_1} \int_{0}^{\infty} \left[B_{y}(x-\frac{1}{2}) + C_{y} - w_{y}(\frac{1}{2})(x-\frac{1}{2}) dx \right] \left(x - \frac{1}{2} \right) dx.$$


Demogorgon Soft Robot


Yin et al, Adv Intell Syst, 1:1900089, 2019.


Demogorgon Soft Robot

Yin et al, Adv Intell Syst, 1:1900089, 2019.


Section BC

$$F_{i} = C_{x}.$$

$$V_{i} = P$$

$$M_{i} = M_{c} - P_{x}.$$

$$\frac{1}{3U} = 0$$

$$\frac{3U}{3Mc} = 0 = 0$$