d) Stress and deformation analysis of one-node planar trusses

Up to this point in this course and in your earlier mechanics courses, we have performed
force analyses of members in planar trusscs using some combination of the method of
sections and the method of joints. From these results, we know:

® The component of stress normal to the cross section of a member is found from

area of the member.

® The total elongation of the member is: e= PL/ AFE , where L is the length of the
member, £ 1s the Young’s modulus of the material and 4 1s the cross sectional
arca of the member.

BEFORE deformation AFTER deformation (exaggerated)

Now let’s determine the deformation of the members in a truss due to the loading.
Consider the simple truss shown above loaded with a force P at joint C. Since this is a
determinate truss, we can determine the loadings carried by the two members | and 2, F,
and £, respectively, from standard equilibrium analysis. From these, we can calculate

the elongations of member 1 and 2 as,

TR,

FlL,
e, =——= 8
27 (8)

respectively. Based on these results, what are the horizontal and vertical components of
displacement of the node from C to C” (u,. and v, respectively) as a result of this

deformation?
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To answer this question, first note that the total movement of C takes into account both
movement causing strain (the elongation e, along axis of member) and movement

causing no axial strain (rigid rotation A8, of the member). From the preceding figure, we
sec that for a small rotation angle A@,, the components (u,v) of the displacement of C

that contribute to the elongation of member 1, ¢, are those along the axis of member 1;

that is, from the figure we have:
I = d | y 93 %
e, = cost, + v, sinb, (9)
Similarly, for member 2, we can write:
€y = cos6, + v sinb, (10)

Substituting equations (7) and (8) into equations (9) and (10) provides us with the two
equations needed to solve for u, and v :

C
Rl
Up COSO, + V. 5in6, = —
kA,
Rl
Uy COSO, + v 5ind, = LVIA
oA,

Please note that the above elongation-displacement equations rely on the following angle
definitions of the truss elements.

Definition of truss member angles
Let 6, be the angle of the jth truss member:

° GJ. 1s measured counterclockwise with respect to the positive x-axis, and

e with the origin of the x-axis placed at the point on the element that is pinned to
ground

(as demonstrated by angles 8, and 6, in the preceding figure).

Only the angles defined as above are valid for the above compatibility equations. Before
starting your analysis, you should clearly 1dentify these truss member angles.

As we will see in some of the following examples, we need to use the above deformation
analysis in order to do stress analysis of indeterminate trusses.

Axial deformation Topic 6: 15 Mechanics of Materials




Example 6.10

A two-member truss is shown below with a force £ acting on joint C.
a) Determine the axial stresses in the two members.
b) Determine the horizontal and vertical components of displacement, . and v, at
node C.
Use the following numerical values: ¢=3687°, h=2m, b=3m, P=500kN

E, =1L, =60GPa and A=A = 2000mm?> .
C— ——
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F, =300 kN
5 38 kN

S FL
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Example 6.12

Each of the three truss members has a length of L and a Young’s modulus of £. The
cross-sectional areas of the members are 4, = 4, = 4; = 4. A horizontally-acting force P
is applied at joint K.

a) Determine expression for the horizonal and vertical components of the
displacement of joint K.

b) Determine the axial forces in the three members of the truss.
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Summary: Indeterminate axial problems (the four-step method)

1. Draw FBD'’s and write down equilibrium equations.
a. Break system into “elements”. For problems in this course, an element:
i. has forces acting only at its ends,
i1. has a constant cross section, and
iii. has constant material properties.

b. Itis recommended that you always draw end forces on element
corresponding to “tension” (if the force actually corresponds to
compression, you will get a negative value for the force in the end...trust
the math...it works!). >

c. Be sure to abide by Newton’s 3rd Law (reactions appear in equal and
opposite pairs) when drawing your 'BD’s

2. Write down the elemental force-deformation equations.
a. For the jth element:
Pl
“TEa
J
b. If you draw all element forces as in tension (as recommended in 1b)
above), then Pj has a positive sign in the equation above. If you choose to

draw the elemental force as in compression, then Pj has a negative sign.

e‘ -Le 3::'6 3. Write down appropriate qompq/ibf!ﬁy equa{ions«_ _ _
a. Inthis step you will write down the constraint equations that exists among
the element elongations.
b. This step is problem-dependent (and requires the most thought):
1. For an axial system constrained between rigid supports, the
compatibility equation needed 1s that the sum of all the elemental

= o
elongations is zero.
e! - el . For elemepts attached to a rigi;l member‘, the motion of the rigid
a S member dictates the relationship that exists among the elemental
elongations.

1. For truss elements, a trigometric relationship must be used to relate
the elemental elongations.

4. Solve equations derived in Steps 1-3 for the elemental forces PJ Count your ~

number of equations and number of unknowns. If you have sufficient equations to
olve, then solve. I not, review the first three steps to see 11 you are missing
e\ ucose\ st 'ﬁéeded equilibrium, force/deformation or compatibility equations. From these
forces determine at this step, the elemental stresses, strains and elongations can be
computed as needed. —
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Remarks

a) If you have enough equations from Step 1 for the number of unknowns, then the
problem is determinate. That 1s, you can solve for elemental forces independent of
displacement analysis (force equations and elongation equations can be solved
sequentially).

b) For indeterminate problems, Steps 1-3 produce a set of coupled equations. That is,
you must simultaneously solve for elemental forces and elemental elongations.

¢) Physically, an indeterminate problem is one tor which the deformations created
by the loading influence the reaction forces. A determinate problem is one for
which the reaction forces can be found by treating the elements as being rigid.

To help see the point made in ¢) above in contrasting determinate and indeterminate
problems, consider Rods I and Il below. Rod I is determinate. We can determine the
loads carried by segments (1) and (2) directly from equilibrium analysis. No information
1s needed on the material makeup of the segments n calculating either the loads or the
stresses in the segments. That 1s, the stress in the segments does not depend on whether
they are made up of steel, aluminum, plastic, or whatever.

Rod 11, however, 1s indeterminate. We cannot determine the segment loads (and stress)
directly from equilibrium. We need to perform a deformation analysis using appropriate
compatibility conditions in order to determine these loads. The answers will depend on
the deformations, and, therefore will depend of the material makeup. That 1s, the loads n
the segments are different for a steel material for both segments than for one segment
made from steel and the other segment made from aluminum (work out this problem 1f
you do not see why).
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Lecture 7 review gquestion

What is the degree of indeterminacy of this structure?
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7. Thermal Effects_

Objectives:
To introduce the concept of strains developed due to temperature changes in material and
how these can lead to thermal stresses for constrained members.

Background:
General 3D stress-strain relationships for isotropic, lincarly clastic material experiencing
mechanical loads and temperature change AT :

1 — —

L= 6,—v(cr_+0'_) HOAT

; FL B! )] L
thermal strains

- _ /

1
8_1.=E_0'y—v(0'x+0'2)_+ oAT
ir 7 -
£ =— Gﬁ—V(C}'\_+Gl‘) HoAT
- E_ P A . _

where £, v and ¢ are the elastic modulus, Poisson’s ratio and coefficient of thermal
expansion, respectively, for the material.
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Thermal Expansion Examples
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Lecture Notes
Member elongation
For an axially-loaded member accounting for thermal effects, we have the axial strain
given by:

e _To oar= L Loar

- & E — AL
Therefore, for a member experiencing a resultant axial load P, length L and cross
sectional area A, the elongation in the x-direction 1s found from mtegration of the above
equation:

EA =

If o, P, E, A and AT are constant along the length of the member, then the above integral
rcduccs to:

__+OM:\ e -—Ej; vofTL

Discussion
Thermal strains can exist in the absence of stress. This is clear from the above stress-
strain relations by setting ¢ =0; non-zero thermal strain in the x-direction can still

P
e=u(L)—u(o)=j(+aAT
0

remain.

For example, consider a thin rod whose left end is fixed and right end is free. If the
material experiences a uniform increase in temperature A7, the rod expands uniformly
with a total clongation of e= aATL . Since there are no external reactions to resist this
expansion, there are no stresses developed in the rod. (To see this, make a cut through the
rod at any point along its length, keeping the right hand side. From the FBD of the right
side, we see that the axial force, and therefore the axial stress, in the rod 1s zero.)

L N
BEFORE temperature N
increase ’
L e
AFTER temperature v

increase
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For this case, the rod has non-zero strain and zero stress: € #0 and 0, =0.

Now, reconsider the same member as above except that both ends are fixed, as seen
below. As before, if the member is heated the material will expand. However, since the
member 1s prevented from moving past the fixed walls, a compressive axial force P is
developed in the member. Since the total elongation of the member remains zero
(because of the fixed walls), we see that the compressive force 1s given by:

e=0=£z+ocATl = P=-FEAoaAT
= EA ~-

. . R P e
producing a compressive stress of o =—4=—baA1 Here, the temperature change

results in thermal stresses.
L A
BEFORE temperature .
increase ’
L

\

AFTER temperature
- S S—
increase
P P
For this case, the rod has zero strain and non-zero stress: £.= 0 and o.# 0.

Reflect back on the results of these two examples. In the first, we found zero stress and
non-zero axial strain. In the second, we found zero axial strain and non-zero stress.

In summary, reactive loads are needed to produce thermal stresses from thermal strains.
Without these, the member will experience thermal strains, but no thermal stresses.

What temperature change can get steel to break?
oy =350 MPa
E = 200 GPa w3 = F= - PAAT
a = 16x10°
. =~C Ny

—————

m = ~ 350)((06
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Example 7.1

Two uniform, linearly elastic rods are joined together at B, and the resulting two-segment
rod is attached to rigid supports at A and C. The rods are initially unstressed.
a) Determine the axial stresses if rod (1) 1s raised by AT and the temperature of rod
(2) 1s held constant.
b) Determine the displacement of node B.

Use the following: Ly=L, [, =2L, Ei=E,=E, 0y=0,=0, A=A and A, =2A

F

Al*Fl‘al A:,E-_y,az
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Example 7.2

Steel rods (A =0.050in>, £=30x10%4si and o =6.5x 107 /°F ) are attached at points
A and C to the rigid, right-angle bracket, as shown below. The two rods are initially
stress free.

a) Determine the axial stresses induced in rods (1) and (2) if the temperature of rod
(1) 1s decreased by 50°F and the temperature of (2) 1s held constant.

b) Determine the transverse shear force and bending moment on the cross section at
D as a result of the temperature change in rod (1).

D

.
=

a a

a
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