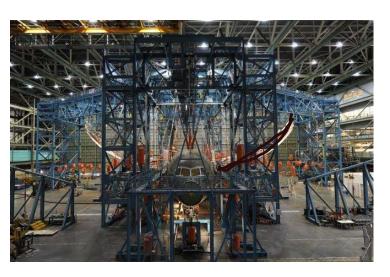


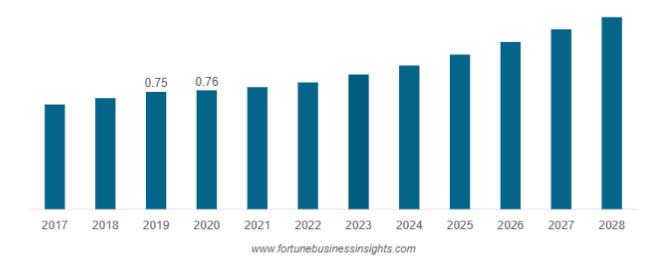
https://www.sglcarbon.com/en/marke ts-solutions/material/sigrapreg-preimpregnated-materials/



https://www.wired.com/2010/03/boeing-787-passes-incredible-wing-flex-test/

Carbon fiber market will grow from \$2.33B in 2021 to \$4.01B in 2028

Europe Carbon Fiber Market Size, 2017-2028 (USD Billion)



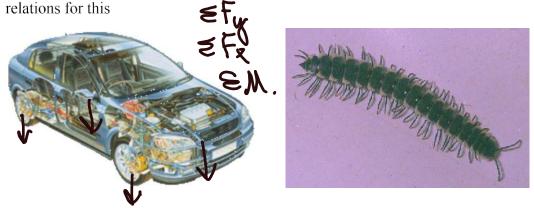
Axial deformation Topic 6:

4 M	28-Aug	Stress – introduction to design of deformable bodies	Chap. 4	
5 W	30-Aug	Stress and strain – general definitions	Chap. 5	
6 F	1-Sep	Axial members – determinate structures	Chap. 6	HW 1
M	4-Sep	Labor Day – no class		
7 W	6-Sep	Axial members – indeterminate structures	Chap. 6	2
8 F	8-Sep	Axial members – planar trusses	Chap. 6	HW. 2
9 M	11-Sep	Axial members – thermal effects	Chap. 7	Quiz. I.
10 W	13-Sep	Torsion members – stresses in circular bars	Chap. 8	
11 F	15-Sep	Torsion members – statically determinate structures	Chap. 8	HW 3

OH > 6 HXZ 500 Z:30 bw. > 355

c) <u>Stress analysis of statically indeterminate structures with externally applied</u> loads

In some structures, the internal force resultants *cannot* be calculated from the static equilibrium of sections. One has to consider material properties and use compatibility



How much load does each tire carry on the automobile above? How much weight does each leg of the millipede support?

Recall that for a statically *determinate* structure:

of unknown forces= # of equations of static equilibrium

For a statically *indeterminate* problem:

of unknown forces> # of equations of static equilibrium

To identify determinate or indeterminate problems: *redundant supports* (if removed, structure remains equilibrium).

#unknowns-#equations=deg of indet.

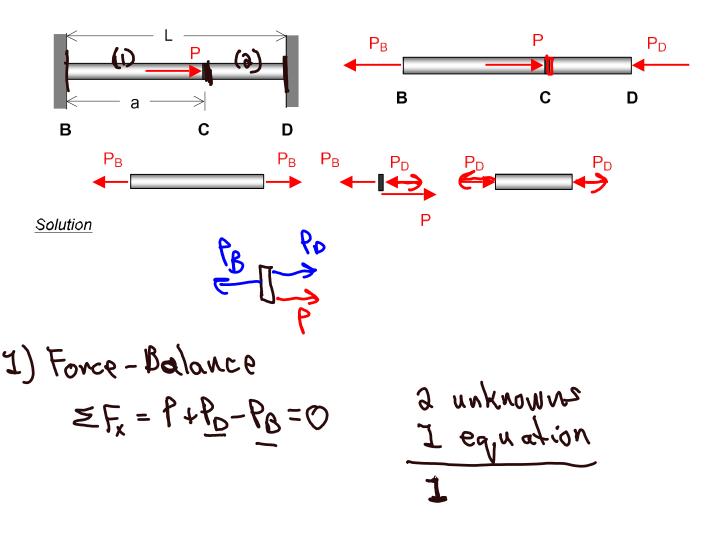
General approach:

- 1) Force balance → tells us whether it's determinate ←
- 2) Force-elongation equations > e=FL
- 3) Compatibility equations.
- 4) Solve

Motivating Example

An axial load P acts at point C on a rod, with a > L/2. Determine the reactions at the fixed ends B and D. The rod has a cross-sectional area of A with a Young's modulus of E. Answer the following questions:

- Q1: Why is this problem indeterminate if considering the rod as a rigid member?
- Q2: How does a consideration of strain (deformation) allow you to solve for the reactions?
- Q3: Which end (B or D) carries the largest reaction load? Defend your answer with a physical argument.



Lecture 6 Review Question:

Which statement best describes how to find the total elongation of a member?

• Elongation is calculated from the distribution of stresses over a cross section.

Elongation is the (force x length)/(modulus x area)

Elongation is the integral of the local strain over the length of the member.

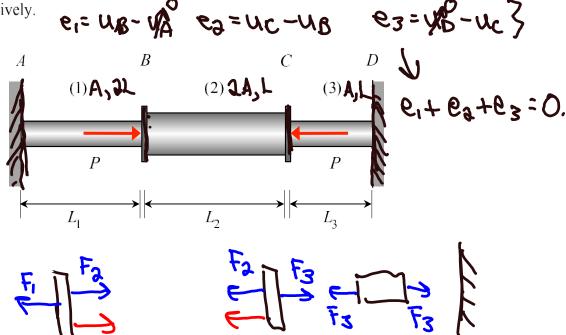
• Elongation is the integral of the total distributed force (in N/m) divided by the average area.

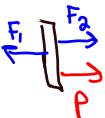
d-evera/

Example 6.7

A three-segment rod that is initially stress-free is attached to rigid supports at ends A and D and is subjected to equal and opposite external loads P at nodes B and C as shown in the figure below. The rod is homogeneous and linearly elastic, having a Young's modulus of E. For this analysis, use the following: $A_1 = A_3 = A$, $A_2 = 2A$, $L_1 = 2L$ and $L_2 = L_3 = L.$

- a) Determine the axial stresses in the three elements: σ_1 , σ_2 and σ_3
- b) Determine the horizontal displacements u_R and u_C at nodes B and C, respectively.





1.) Equilibrium $(\xi F_x)_B = F_0 + P - F_1 = 0$ $(\xi F_x)_C = F_3 - F_3 - P = 0$

F= F=+P

3.) Compatility.

4.) Solve.

$$2(P+F_{2}) + \frac{F_{3}}{2} + (P+F_{3}) = 0$$

$$F_{1} = \frac{1}{7}P$$

$$F_{3} = \frac{1}{7}P$$

$$F_{4} = -\frac{1}{7}P$$

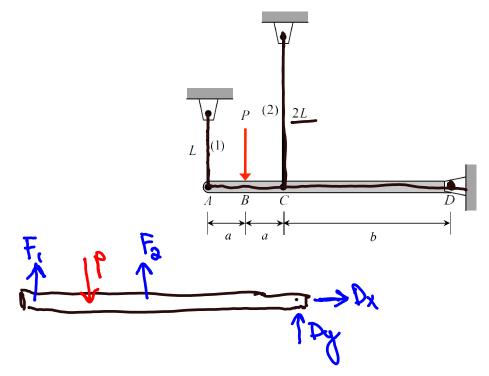
a)
$$\Delta I = \frac{1}{2} = \frac{1}{$$

b)
$$e_1 = U_8 - U_A = U_8 = \frac{F_1 L_1}{F_1 A_1} = \frac{2PL}{7EA}$$
 $u_c = U_8 + e_2 = \frac{2PL}{7EA} - \frac{3PL}{7EA} = -\frac{PL}{7EA}$

Example 6.8

Load P is applied to rigid beam AD. Members (1) and (2) are made up of a material having a Young's modulus of E, and each have a cross-sectional area of \underline{A} .

- a) Determine the axial stresses in support rods (1) and (2) after the load P is applied.
- b) Determine the resulting rotation angle θ in beam AD. Assume θ to be small.



J I) Ednippyinn

 $(\Xi M)_0 = -F_2(b) + P(b+a) - F_1(b+2a) = 0$ } 1 equations

2.) Force-elougation.

e,=F,L, ea=Fala

$$tand \sim \theta = \frac{60}{60} = \frac{61}{61}$$

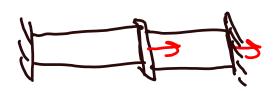
$$e_{\theta} = \left(\frac{p+9a}{p}\right)e_{1}$$

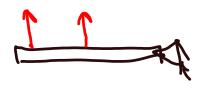
$$3\vec{E} = E'\left(\frac{p+9a}{p}\right)$$

$$\frac{1}{h}\left(\frac{1}{h} + \frac{3}{h} + \frac{3}{$$

$$F' = \frac{\left(p + 5d + \frac{9}{4} \frac{p \cdot 9d}{p \cdot 9d}\right)}{\left(p + 5d + \frac{9}{4} \frac{p \cdot 9d}{p \cdot 9d}\right)}$$

b)
$$Q = \frac{e_2}{b} = \frac{F_3 L_2}{b F_3 A_2}$$



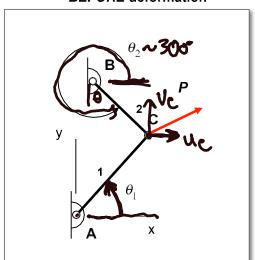


d) Stress and deformation analysis of one-node planar trusses

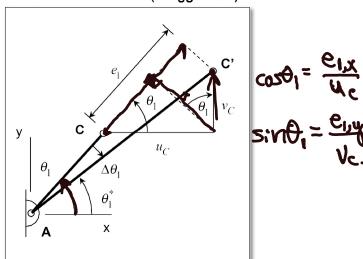
Up to this point in this course and in your earlier mechanics courses, we have performed force analyses of members in planar trusses using some combination of the method of sections and the method of joints. From these results, we know:

- The component of stress normal to the cross section of a member is found from $\sigma = P/A$ where P is the load carried by the member and A is the cross-sectional area of the member.
- The total elongation of the member is: e = PL / AE, where L is the length of the member, E is the Young's modulus of the material and A is the cross sectional area of the member.

BEFORE deformation



AFTER deformation (exaggerated)



Now let's determine the deformation of the members in a truss due to the loading. Consider the simple truss shown above loaded with a force P at joint C. Since this is a determinate truss, we can determine the loadings carried by the two members 1 and 2, F_1 and F_2 , respectively, from standard equilibrium analysis. From these, we can calculate the elongations of member 1 and 2 as,

$$e_{1} = \frac{F_{1}L_{1}}{EA_{1}}$$
 (7)

$$e_2 = \frac{F_2 L_2}{E A_2} \tag{8}$$

respectively. Based on these results, what are the horizontal and vertical components of displacement of the node from C to C' (u_C and v_C , respectively) as a result of this deformation?

To answer this question, first note that the total movement of C takes into account both movement causing strain (the elongation e_1 along axis of member) and movement causing no axial strain (rigid rotation $\Delta\theta_1$ of the member). From the preceding figure, we see that for a small rotation angle $\Delta\theta_1$, the components (u_C, v_C) of the displacement of C that contribute to the elongation of member 1, e_1 , are those along the axis of member 1; that is, from the figure we have:

$$\underbrace{e_{1} = u_{C} \cos\theta_{1} + v_{C} \sin\theta_{1}}_{\text{Similarly, for member 2, we can write:}} \qquad \underbrace{e_{1} \Rightarrow u_{C}, v_{E}}_{\text{eq}}. \tag{9}$$

$$e_{2} = u_{C} \cos\theta_{2} + v_{C} \sin\theta_{2} \qquad \underbrace{e_{3}}_{\text{eq}} \tag{10}$$

Substituting equations (7) and (8) into equations (9) and (10) provides us with the two equations needed to solve for u_C and v_C :

$$\underline{u_C}\cos\theta_1 + v_C\sin\theta_1 = \frac{F_1L_1}{EA_1}$$

$$u_C\cos\theta_2 + v_C\sin\theta_2 = \frac{F_2L_2}{EA_2}$$

Please note that the above elongation-displacement equations rely on the following angle definitions of the truss elements.

Definition of truss member angles

Let θ_i be the angle of the jth truss member:

- θ_j is measured counterclockwise with respect to the positive x-axis, and
- with the origin of the x-axis placed at the point on the element that is pinned to ground

(as demonstrated by angles θ_1 and θ_2 in the preceding figure).

Only the angles defined as above are valid for the above compatibility equations. Before starting your analysis, you should clearly identify these truss member angles.

As we will see in some of the following examples, we need to use the above deformation analysis in order to do stress analysis of indeterminate trusses.