6. Axial deformation

Objectives:
To study the relationships between applied axial loads and axial deformations in
structural components.

Background:.
® Stress-strain relationship for uni-axial loading for isotropic, linearly elastic
material (loading in the x-direction):
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Lecture topics:

a) General theory of axial deformation

b) Axial deformation examples
i) uniform axial deformations
ii) non-homogeneous cross sections
iii) axially varying cross sections
)

iv) axially varying loadings
¢) Stress analysis of statically indeterminate structures with externally applied loads

d) Deformation and stress analysis of one-node planar trusses

Learning Obijective:
» Given the loading conditions on an axial member,
determine the elongation of the member.



Lecture Notes
a) General theory of axial deformation

* Loading p(x) (force/length) applied along x-axis on a structural component.

* Two points A and B (originally at locations x and x+Ax), respectively, move to
points A" and B through displacements u(x) and u(x+Ax), respectively.

* Before deformation, A and B are separated by a distance of Ax.

« After deformation, A" and B” are separated by a distance of Ax", where Ax" - Ax =
U(XTAX) — u(x).
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Axial strain (geometric relationship)

- A0 Ax
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= li ;  see preceding figure (1)
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Hooke’s Law (stress-strain relationship)
o(x)  F(x)
E(x) Ax)E(x)

(2)

c(x)=E(x)e(x) = &(x)=

where:
- F(x)= j o(x)dA = A(x)o(x)

area

Resultant axial force corresponding to axial load/Iength p(x) (force balance
relationship)

zﬁ\_ =F(x+A)=F(x)+ p(x)Ax=0 = Fat A;j— P _ —p(x)

Therefore,

i Flx+Av)=F(x) dFl
Ar—0 Ax dx.
Integrating gives:

gits

F(x)= £(0)- [ p(x) d (3)
0

Axial elongation (force-displacement relationship)
X
8(_x)=% = zr(x]:‘z_rLQ)JrJ.E(x)cir 4
0

dx [

Therefore,
L
=u(L)—u(0)= Ja‘(x)dx = total elongation of member
0
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Summary
Using equation (3), we can determine the resultant axial force F(x) at any location x
along the member through integration:

’ F(x)= F(())—]p(x) dx
0

This result i1s then used in equation (5) to determine the total axial e¢longation e of the
member through integration:

_[ F(x)

L A(x) E(x
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b) Axial deformation examples
In the following, we will consider examples of special situations in using the above
equations for determining the total elongation of an axially-loaded member:

i)

iii)

iv)

Iniform axial deformations: \:—:“é A
For this special case, we consider examples for which the applied axial loading p(x)
i1s zero, along with £ and A being constant across a cross section and constant alon3
the Icngth of the member. For this special case, equation (6) reduces to:
i
J CFw FJ~d FL e=EL -
JR— X = bY:
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This 1s a Slmﬁe, casy-to-use equation for deformation analysis. However, recall the
assumptions made in order to arrive at this simple equation.

S

Non-homogeneous cross sections:

Here the cross section of the rod is not homogencous in its material makeup (that 1s,
the elastic modulus is not a constant across the rod cross section). The load shared
by the different materials 1s not the same; however, the axial strain seen by each
material is the same. We will see examples of this in this section ot the course
material.

Non-constant cross section along the length of the member:
Here the cross sectional area Young’s modulus £ is assumed to the constant
throughout the member and the axial load £ 1s assumed to be constant along its
length. However, the cross-section area A(x) varies with position x. Evaluation of
the total member elongation requires the following integration:

L

F) . Fflde
£ A(x) b= L’-([ A(x) (59)

Non-uniform loading along the member:
Here the cross sectional arca Young’s modulus £ is assumed to the constant
throughout the member and the cross sectional area A 1s assumed to be constant
along its length. However, the force/length loading p(x) varies with position x.
Evaluation of the total member elongation requires the following integration:
F(x) |k
_f gre L

F(x)dx 5
E(x)A(x) EA-[[ (x)dx (5¢)

where:

F(x)= F(O)—jp(x) dx
0
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Lecture 5 Review Questions:

How many independent stresses can exist on a general stress
element?
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« Depends on the geometry
. Ty
The two subscripts on the shear stress represent: -

® Direction along which the force acts, direction perpendicular to

the force
< Direction of primary force, direction of secondary force

"Q_Fl'amrrwhitm‘e‘acts, direction along which the force acts

For a structure with no mechanical constralnts the shear straln
increases with temperature.”
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Example 6.1

Rigid beam AB (weighing W, =200 /b) supports a crate weighing W =1000/b. In tumn,

the beam 1is supported by rods (1) and (2) with lengths of 21=6/i, Young’s moduli

5 =F,=F=30x 10%ksi , and diameters d, =d,=04in, respectively. What are the

downward displacements u , and u of ends A and B, respectively, of the beam? Assume

small rotations in the beam.
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Example 6.6

A rod 1s constructed from elements (1) and (2), with these elements being made up of
materials having Young’s moduli of £} and £, , respectively. Elements (1) and (2) have

lengths of 7, =21 and L, =L, and diameters of d, =2d and d, =d , respectively.

Elements (1) and (2) arc joined by a rigid connector at B, with a rigid connector being
attached to element (2) at C. The rod 18 loaded on connectors B and C, as shown in the
figure below. Determine the displacement of C.
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Example 6.3

-

A magnesium-alloy rod ( £, =8x10"ksi), having a diameter of o, =1in, is encased in a

brass tube ( £, =16x 10° ksi ), having an outer diameter of o, =2 in. The rod and tube
both have a length of £ =30in. An axial load P =20 kips is applied to the free end, as
shown below.

a) Determine the normal stresses &, and ¢, in the two materials.

b) Determine the elongation of the bimetallic rod.
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Figure 5. Cross-sections of the test specimens
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Example 6.4

A tapered rod having a length of L and made up of a material with a Young’s modulus of
E 1s loaded with an axial load P, as shown below. The cross sectional arca of the rod

varies linearly from 4, at x =0 to 4 at x = L. Determine the total axial elongation of the

road as a result of the axial load P.

A
Y.
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