

## 6. Axial deformation

### **Objectives:**

To study the relationships between applied axial loads and axial deformations in structural components.

### **Background:**

- Stress-strain relationship for uni-axial loading for isotropic, linearly elastic material (loading in the  $x$ -direction):

$$\varepsilon_x = \frac{\sigma_x}{E}$$

$$\varepsilon_y = \varepsilon_z = -\frac{\nu \sigma_x}{E}$$

### **Lecture topics:**

- a) General theory of axial deformation
- b) Axial deformation examples
  - i) uniform axial deformations
  - ii) non-homogeneous cross sections
  - iii) axially varying cross sections
  - iv) axially varying loadings
- c) Stress analysis of statically indeterminate structures with externally applied loads
- d) Deformation and stress analysis of one-node planar trusses

### **Learning Objective:**

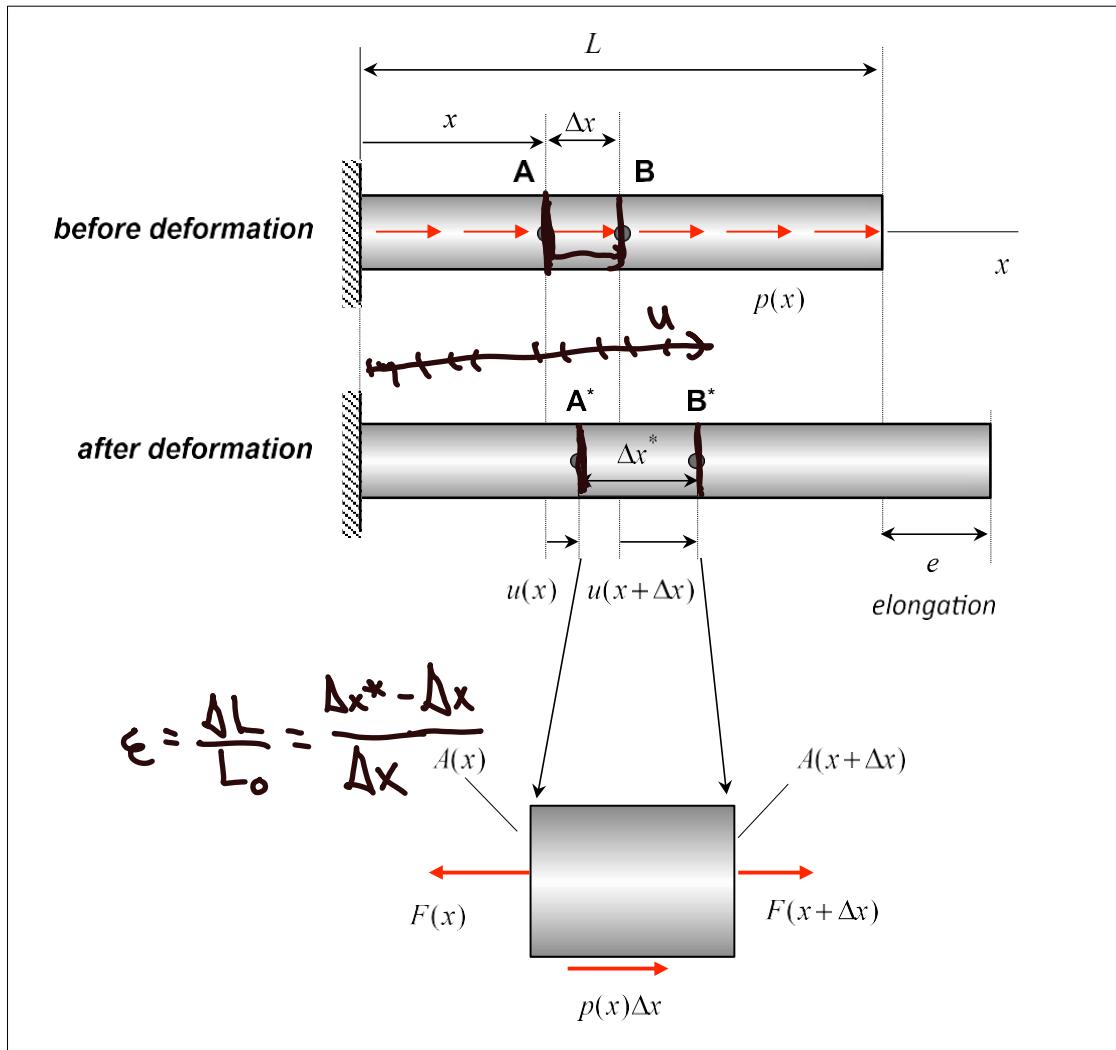
- Given the loading conditions on an axial member, determine the elongation of the member.



## Lecture Notes

### a) General theory of axial deformation

- Loading  $p(x)$  (force/length) applied along  $x$ -axis on a structural component.
- Two points A and B (originally at locations  $x$  and  $x+\Delta x$ ), respectively, move to points  $A^*$  and  $B^*$  through displacements  $u(x)$  and  $u(x+\Delta x)$ , respectively.
- Before deformation, A and B are separated by a distance of  $\Delta x$ .
- After deformation,  $A^*$  and  $B^*$  are separated by a distance of  $\Delta x^*$ , where  $\Delta x^* - \Delta x = u(x+\Delta x) - u(x)$ .

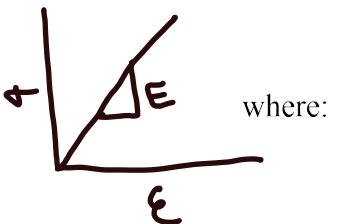


$$\sum F = -F(x) + F(x + \Delta x) + p(x)\Delta x = 0$$

### Axial strain (geometric relationship)

$$\begin{aligned}
 \underline{\varepsilon(x)} &= \lim_{\Delta x \rightarrow 0} \frac{\Delta x^* - \Delta x}{\Delta x} \\
 &= \lim_{\Delta x \rightarrow 0} \frac{u(x + \Delta x) - u(x)}{\Delta x} ; \quad \text{see preceding figure} \\
 &= \frac{du}{dx} ; \quad \text{definition of a derivative}
 \end{aligned} \tag{1}$$

### Hooke's Law (stress-strain relationship)



$$\underline{\sigma(x)} = E(x)\varepsilon(x) \Rightarrow \varepsilon(x) = \frac{\sigma(x)}{E(x)} = \frac{F(x)}{A(x)E(x)} \tag{2}$$

where:

$$F(x) = \int_{\text{area}} \sigma(x) dA = A(x)\sigma(x)$$

### Resultant axial force corresponding to axial load/length $p(x)$ (force balance relationship)

$$\sum F_x = F(x + \Delta x) - F(x) + p(x)\Delta x = 0 \Rightarrow \frac{F(x + \Delta x) - F(x)}{\Delta x} = -p(x)$$

Therefore,

$$\lim_{\Delta x \rightarrow 0} \frac{F(x + \Delta x) - F(x)}{\Delta x} = \frac{dF}{dx} = -\underline{p(x)}$$

Integrating gives:

$$F(x) = \underline{F(0)} - \int_0^x p(x) dx \tag{3}$$

### Axial elongation (force-displacement relationship)

$$\varepsilon(x) = \frac{du}{dx} \Rightarrow \underline{\varepsilon(x)} = \underline{u(0)} + \int_0^x \varepsilon(x) dx \tag{4}$$

Therefore,

$$\begin{aligned}
 \underline{e} &= \underline{u(L)} - \underline{u(0)} = \int_0^L \varepsilon(x) dx = \text{total elongation of member} \\
 &= \int_0^L \frac{F(x)}{A(x)E(x)} dx
 \end{aligned} \tag{5}$$

### Summary

Using equation (3), we can determine the resultant axial force  $F(x)$  at any location  $x$  along the member through integration:

$$F(x) = F(0) - \int_0^x p(x) dx$$

This result is then used in equation (5) to determine the total axial elongation  $e$  of the member through integration:

$$e = \int_0^L \frac{F(x)}{A(x)E(x)} dx$$

### b) Axial deformation examples

In the following, we will consider examples of special situations in using the above equations for determining the total elongation of an axially-loaded member:

#### i) Uniform axial deformations:

For this special case, we consider examples for which the applied axial loading  $p(x)$  is zero, along with  $E$  and  $A$  being constant across a cross section and constant along the length of the member. For this special case, equation (6) reduces to:

$$e = \int_0^L \frac{F(x)}{A(x)E(x)} dx = \frac{F}{AE} \int_0^L dx = \frac{FL}{AE} \quad e = \frac{FL}{EA} \quad (5a)$$

This is a simple, easy-to-use equation for deformation analysis. However, recall the assumptions made in order to arrive at this simple equation.

#### ii) Non-homogeneous cross sections:

Here the cross section of the rod is not homogeneous in its material makeup (that is, the elastic modulus is not a constant across the rod cross section). The load shared by the different materials is not the same; however, the axial strain seen by each material is the same. We will see examples of this in this section of the course material.

#### iii) Non-constant cross section along the length of the member:

Here the cross sectional area Young's modulus  $E$  is assumed to be constant throughout the member and the axial load  $F$  is assumed to be constant along its length. However, the cross-section area  $A(x)$  varies with position  $x$ . Evaluation of the total member elongation requires the following integration:

$$e = \int_0^L \frac{F(x)}{E(x)A(x)} dx = \frac{F}{E} \int_0^L \frac{dx}{A(x)} \quad (5b)$$

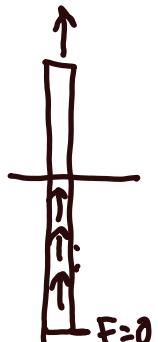
#### iv) Non-uniform loading along the member:

Here the cross sectional area Young's modulus  $E$  is assumed to be constant throughout the member and the cross sectional area  $A$  is assumed to be constant along its length. However, the force/length loading  $p(x)$  varies with position  $x$ . Evaluation of the total member elongation requires the following integration:

$$e = \int_0^L \frac{F(x)}{E(x)A(x)} dx = \frac{1}{EA} \int_0^L F(x) dx \quad (5c)$$

where:

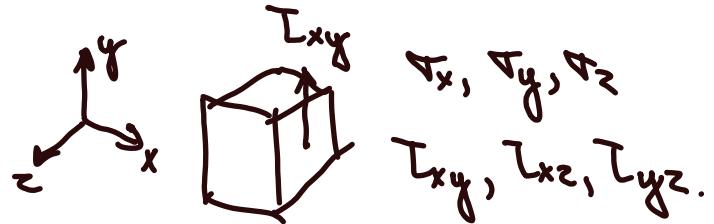
$$F(x) = F(0) - \int_0^x p(x) dx$$



## Lecture 5 Review Questions:

How many independent stresses can exist on a general stress element?

- 4
- **6**
- 8
- 18
- Depends on the geometry



The two subscripts on the shear stress represent:

$\tau_{ij}$

- Direction along which the force acts, direction perpendicular to the force
- ✗ Direction of primary force, direction of secondary force
- Plane on which force acts, direction along which the force acts

For a structure with no mechanical constraints, the shear strain increases with temperature.

$\gamma$

- True
- False

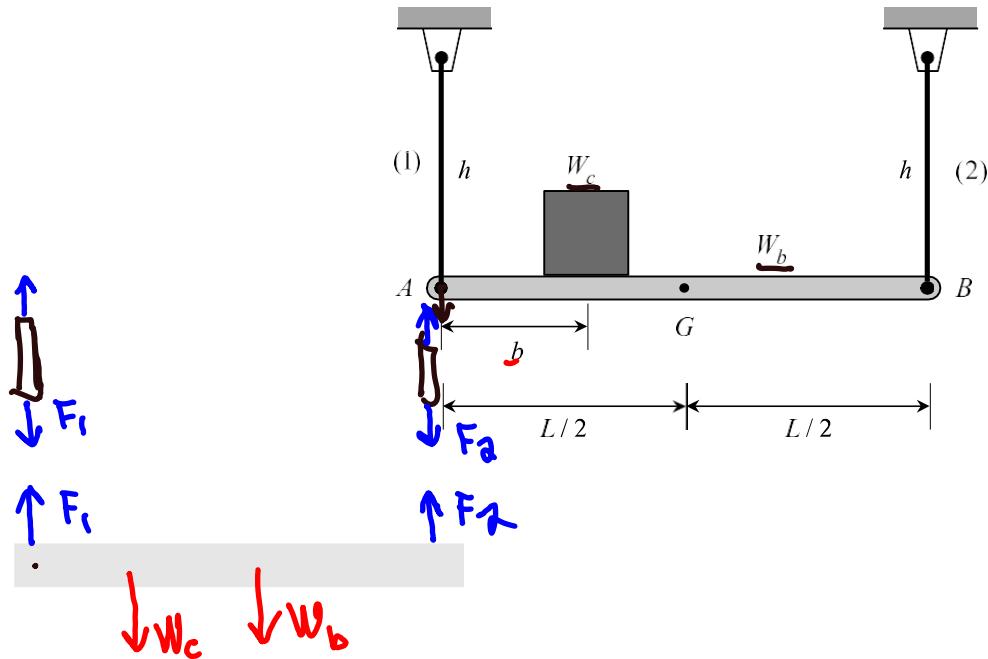
$$\epsilon_x = \frac{1}{E} (\sigma_x - \nu (\sigma_y + \sigma_z)) + \alpha \Delta T$$

$$\gamma_{xy} = \frac{\tau_{xy}}{G}$$



### Example 6.1

Rigid beam AB (weighing  $W_b = 200 \text{ lb}$ ) supports a crate weighing  $W_c = 1000 \text{ lb}$ . In turn, the beam is supported by rods (1) and (2) with lengths of  $h = 6 \text{ ft}$ , Young's moduli  $E_1 = E_2 = E = 30 \times 10^3 \text{ ksi}$ , and diameters  $d_1 = d_2 = 0.4 \text{ in}$ , respectively. What are the downward displacements  $u_A$  and  $u_B$  of ends A and B, respectively, of the beam? Assume small rotations in the beam.



$$(\Sigma M)_A = -W_c(b) - W_b\left(\frac{L}{2}\right) + F_2(L) = 0$$

$$F_2 = \frac{b}{L} W_c + W_b \left(\frac{1}{2}\right)$$

$$\Sigma F_y = F_1 + F_2 - W_c - W_b = 0$$

$$F_1 = W_c + W_b - \left(\frac{b}{L} W_c + \frac{1}{2} W_b\right)$$

$$F_1 = \left(1 - \frac{b}{L}\right) W_c + \frac{1}{2} W_b$$

$$v_A = \underline{e_{(1)}} = \frac{F_{(1)} L_{(1)}}{E_{(1)} A_{(1)}} =$$

Axial deformation

Topic 6: 6

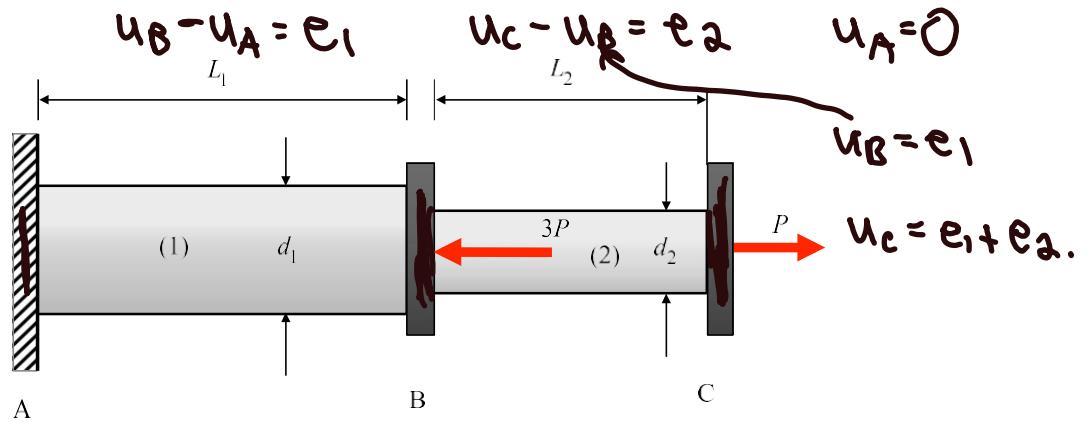
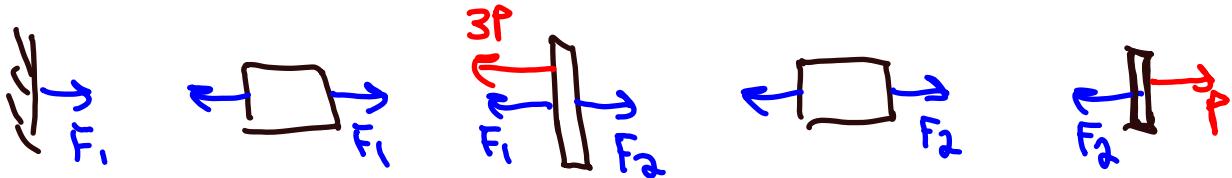
Mechanics of Materials

$$v_B = \underline{e_{(2)}} = \frac{F_{(2)} L_{(2)}}{E_{(2)} A_{(2)}}.$$

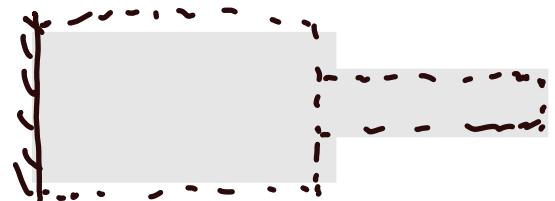


### Example 6.6

A rod is constructed from elements (1) and (2), with these elements being made up of materials having Young's moduli of  $E_1$  and  $E_2$ , respectively. Elements (1) and (2) have lengths of  $L_1 = 2L$  and  $L_2 = L$ , and diameters of  $d_1 = 2d$  and  $d_2 = d$ , respectively. Elements (1) and (2) are joined by a rigid connector at B, with a rigid connector being attached to element (2) at C. The rod is loaded on connectors B and C, as shown in the figure below. Determine the displacement of C.



$$\begin{aligned} (\sum F_x)_C &= P - F_2 = 0 \Rightarrow F_2 = P \\ (\sum F_x)_B &= F_2 - F_1 - 3P = 0 \Rightarrow F_1 = -2P \end{aligned}$$



$$e_2 = \frac{F_2 L_2}{E_2 A_2} = \frac{P L}{E_2 (\pi (d/2)^2)}$$

$$e_1 = \frac{F_1 L_1}{E_1 A_1} = \frac{-2P(2L)}{E_1 (\pi (2d/2)^2)}$$

$$e_1 = \frac{4PL}{E_1 \pi d^2}$$

$$e_1 = \frac{-4PL}{E_1 \pi d^2}$$

$$u_c = e_1 + e_2$$

$$= -\frac{4PL}{\pi E_1 d^2} + \frac{4PL}{\pi E_2 d^1}$$

$$u_c = \frac{4PL}{\pi d^2} \left( \frac{1}{E_2} - \frac{1}{E_1} \right)$$

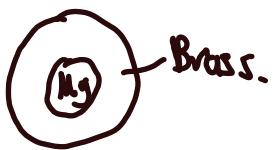
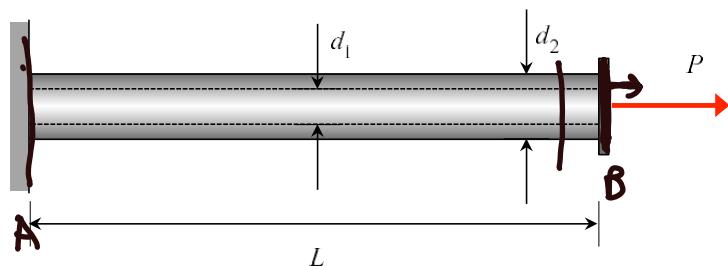
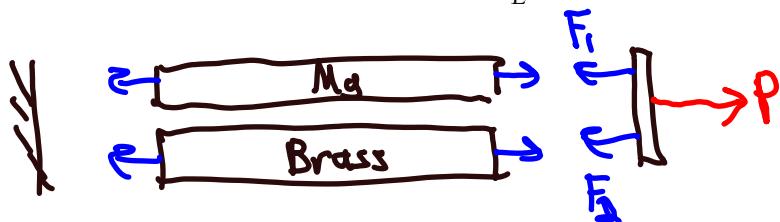
### Example 6.3

A magnesium-alloy rod ( $E_1 = 8 \times 10^3 \text{ ksi}$ ), having a diameter of  $d_1 = 1 \text{ in}$ , is encased in a brass tube ( $E_2 = 16 \times 10^3 \text{ ksi}$ ), having an outer diameter of  $d_2 = 2 \text{ in}$ . The rod and tube both have a length of  $L = 30 \text{ in}$ . An axial load  $P = 20 \text{ kips}$  is applied to the free end, as shown below.

- Determine the normal stresses  $\sigma_1$  and  $\sigma_2$  in the two materials.
- Determine the elongation of the bimetallic rod.

$$u_B - u_A = \epsilon_1$$

$$u_B - u_A = \epsilon_2$$



$$\begin{aligned} \sum F_x &= P - F_1 - F_2 = 0 & \text{1 eqn} \\ (1) \quad F_1 + F_2 &= P & \text{2 unknowns.} \end{aligned}$$

Elongation:

$$e_1 = \frac{F_1 L_1}{E_1 A_1} \quad e_2 = \frac{F_2 L_2}{E_2 A_2}$$

Compatibility:

$$e_1 = e_2 \quad \frac{F_1 L_1}{E_1 A_1} = \frac{F_2 L_2}{E_2 A_2} \quad (2)$$

$$F_1 = F_2 \left( \frac{L_2}{E_2 A_2} \right) \left( \frac{E_1 A_1}{L_1} \right)$$

$$F_2 \left( \frac{L_2}{E_2 A_2} \right) \left( \frac{E_1 A_1}{L_1} \right) + F_2 = P$$

$$F_2 \left( 1 + \frac{E_1 A_1}{E_2 A_2} \right) = P \quad \}$$

$$\sigma_{U,concrete} = 0.33 \text{ ksi}$$

$$\sigma_{U,steel} = 60 \text{ ksi}$$

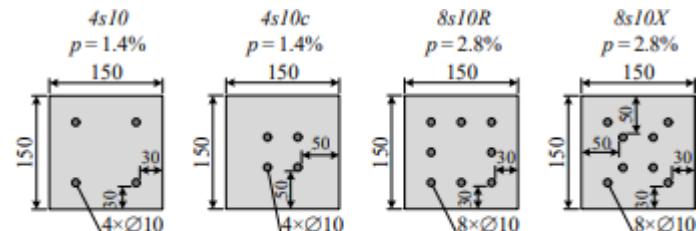


Figure 5. Cross-sections of the test specimens

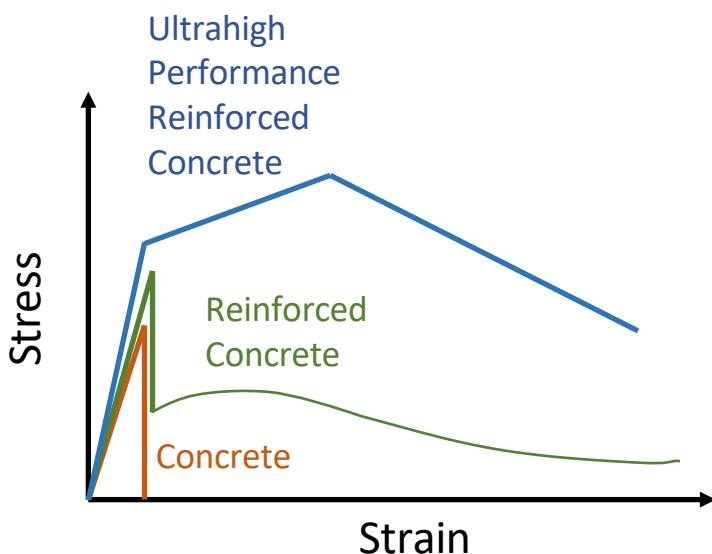
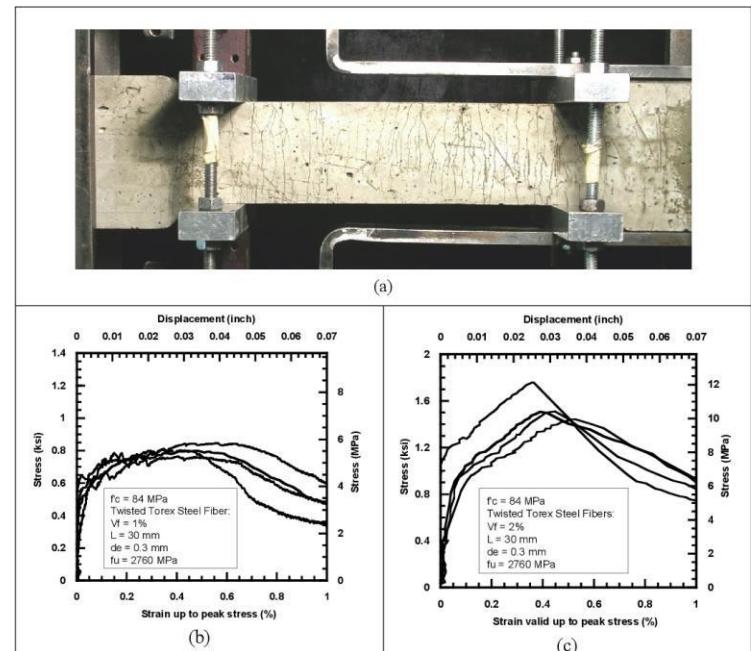
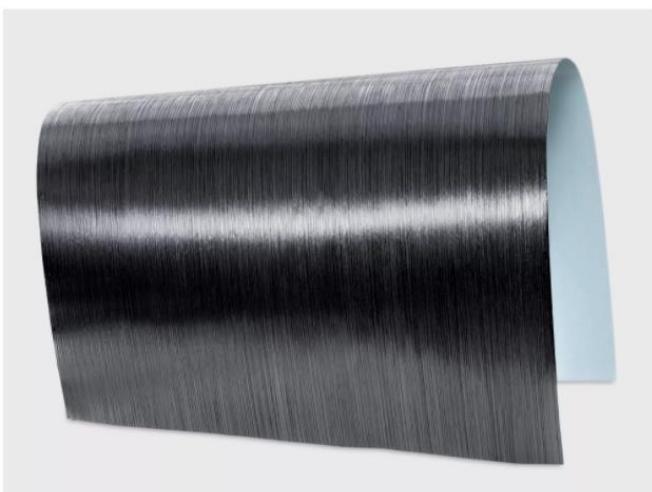
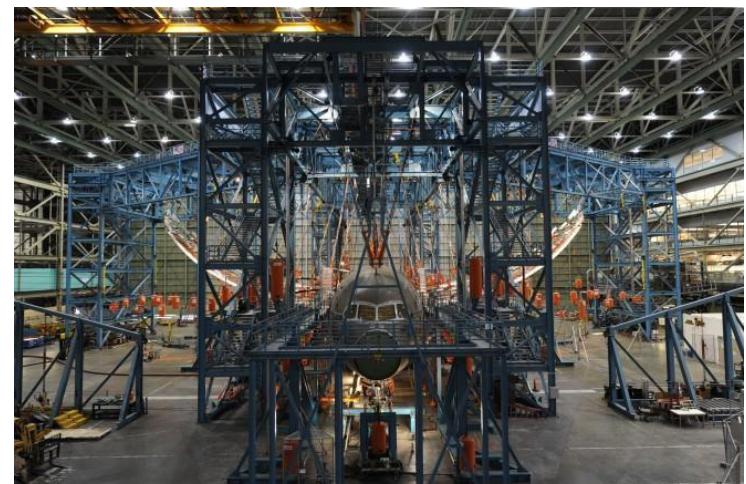


Figure 6. Tension stress-strain curves in tension of HPRC composite for two series of tests

A. E. Naaman. *Proceedings of the 2nd International RILEM Conference*, pp. 17-26. 2011



<https://www.sglcarbon.com/en/markets-solutions/material/sigrapreg-pre-impregnated-materials/>



<https://www.wired.com/2010/03/boeing-787-passes-incredible-wing-flex-test/>

### Example 6.4

A tapered rod having a length of  $L$  and made up of a material with a Young's modulus of  $E$  is loaded with an axial load  $P$ , as shown below. The cross sectional area of the rod varies linearly from  $A_0$  at  $x = 0$  to  $A_1$  at  $x = L$ . Determine the total axial elongation of the rod as a result of the axial load  $P$ .

