Axial and hoop stresses in thin-walled pressure vessels

Consider a closed, cylindrical, thin-walled pressure vessel having an inner radius of *r* and wall thickness *t* and with an internal pressure of *p*.

Axial component of stress

The axial component of normal stress, σ_a , in the sidewall of the pressure vessel is seen through a mathematical cut around the circumference of the vessel. The axial force F_a is distributed over a circumferential strip at the cut. The axial component is not seen in an open tank.

Hoop component of stress

The hoop component of normal stress, σ_h , in the sidewall of the pressure vessel is seen through a mathematical cut along the longitudinal axis of the vessel. The hoop force F_h is distributed over a longitudinal strip at the cut.

