
A.1 Summary of axially-loaded members 
 
 
Summary topics: 

a) Summary of fundamental results 
b) Problem solving method 

c) Sign conventions 
d) Force/elongation and torque/angle of twist equations 

e) Compatibility equations 
f) Determinate and indeterminate problems 

 
 
Lecture material 
Up to this point in the course, we have focused on straight structural members whose 
loading has been aligned with the member axis, either through an axial force on a rod or an 
axial torque on a shaft. Although each type of problem is unique in its own way, the 
approach that we use in solving the stress analysis problem is essentially the same for both. 
In this section of the notes, we will review this approach, giving an emphasis on the 
similarities in its application to each problem. 
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a) Summary of fundamental results 
Before reviewing the solution methods, let us first review some fundamental results from 
each problem. 
 
Axially-loaded rod 

 B  C

 P  P

 B  C

 T  T

 
The axial strain ε  is constant across a given cross section of the rod. Since the axial stress 
is given by  σ = Eε  the stress is also constant across a given cross section if the Young’s 
modulus is constant; however, if E varies across a cross section, then the axial stress will 
vary also. Say we consider a rod made up of two materials: material (1) shaped as a tube 
and material (2) as an inner core of the tube, with Young’s moduli of   E2 > E1 . Since the 
two materials experience the same strain, we conclude that the axial stresses are related by 

 σ 2 >σ1 . 

 (1)
 (2)

  for E2 > E1

axial	strain,	ε	 axial	stress,	σ	rod	cross	sec1on	
 

A stress element on a cut made perpendicular to the member axis is as shown below with a 
normal component of stress on the  ±x  faces. 
 

x

σ

P

xσ

stress	element	for	rod	
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Shaft with axial torque 

 B  C

 P  P

 B  C

 T  T

 
The angle of twist across the cross section of the shaft is a constant; therefore, the shear 
strain γ  varies linearly with radial position on the cross since   γ = ρ dφ / dx . Since the 
shear stress is given by   τ = Gγ = Gρ dφ / dx  the shear stress also varies linearly across a 
given cross section if the shear modulus is constant; however, if G varies across a cross 
section, then the axial stress will vary from this linear distribution. Say we consider a shaft 
made up of two materials: material (1) shaped as a tube and material (2) as an inner core of 
the tube, with shear moduli of   G1 > G2 . Throughout each material, the shear stress will 
vary linearly with radial position; however, the shear stress will have a “jump up” in value 
where material (1) interfaces with material (2). 
 

 (1)
 (2)

  for G1 > G2

shear	strain,	γ	 shear	stress,	τ	sha-	cross	sec0on	
 

 
Stress elements on a cut made perpendicular to the member axis are as shown. 

x

T

stress	element	for	sha-	at	A	

x
τ

τ

A

B

stress	element	for	sha-	at	B	

x
τ

τ
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b) Problem solving method 

1) Draw free body diagram(s) (FBDs) and write down equilibrium equations from 
FBDs. 

2) Write down force/elongation, or torque/angle of twist, equations. 
3) Write down compatibility relations in terms of the axial forces/torques. 

4) Solve the equilibrium and compatibility equations. 
 
It is recommended that you follow these steps on all problems; usage of these will greatly 
simplify your problem-solving thought process. The procedure is applicable to both 
determinate and indeterminate problems; it is only in Step 4) where you see a difference in 
terms of which equations from equilibrium and compatibility must be solved 
simultaneously for your solution. 
 
 
c) Sign conventions 
Sign conventions follow throughout all of the analysis, including: axial forces/axial 
torques, normal stresses, shear stresses, axial strains, shear strains, axial elongations and 
angles of twist. For all problems, regardless of complexity, it is important to note and 
remember these sign conventions. Do not change sign conventions for different elements in 
the structure; this will lead to confusion for both you and the grader. It is also 
recommended (but not required) that you assign positive directions to all unknown forces 
and torques in your FBDs.  
 
Axial forces, normal stress and axial elongation 
Axial forces are defined as POSITIVE when they put the loaded element in TENSION, as 
shown in the figure below. Normal stresses are defined as positive for those resulting from 
tensile axial loads, just as axial strains are positive when the element is in tension. Positive 
elongations are defined as those that result from a positive load on the element. 

 B  C

 P  P

 B  C

 T  T

 
 
Axial torques, shear stress and angles of twist 
Axial torques are defined as POSITIVE when the applied torques point OUTWARD on the 
face of the element, as shown in the figure below. Shear stresses are defined as positive for 
those resulting from positive torques, just as shear strains are positive corresponding to 
positive torques. Positive angles of twist are defined as those that result from a positive 
torque on the element. 

TT

 



Summary: axially-loaded members  A1-5 ME 323 

d) Force/elongation and torque/angle of twist equations equations 
The force/elongation equation for an element experiencing an axial load P and a 
temperature change  ΔT  is: 

 
 
e = PL

EA
+αΔTL  

where L is the length of the element, A is the cross-sectional area, E is the Young’s 
modulus, and α  is the thermal expansion coefficient. Recall that usage of this equation is 
based on the sign conventions reviewed earlier. 

 B  C

 P  P

 B  C

 T  T

 
 
The torque/angle of twist equation for an element experiencing an axial torque is: 

 
 
φ = TL

GIP
 

where L is the length of the element,  IP  is the polar area moment, and G is the shear 
modulus. Recall that usage of this equation is based on the sign conventions reviewed 
earlier. 

TT

 
e) Compatibility equations 
The compatibility equations provide information on the geometry of deformation in the 
problem. Typically, we use the compatibility equations to relate the deformations of 
different elements in the structure. Note that both the magnitudes AND the signs of the 
deformations are important in writing down the compatibility equations. It is important to 
recall the sign conventions discussed earlier before writing down the compatibility 
equations. The following is a listing of the compatibility equations for some typical 
connections of axial elements. Do not attempt to memorize these, rather, focus on the logic 
behind these relationships. 
 
Collinear elements – axial forces applied 

  uC = e1  

  uD = uC + e2 = e1 + e2  

  uE = uD + e3 = e1 + e2 + e3 = 0  
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 B  C  D  E

 uC  uD

 (1)  (2)  (3)

 B  C  D  E

 φC

 (1)  (2)  (3)

 φD

 B  C  D

 uC

 (1)  (2)

 (3)

 B  C  D

 (1)  (2)

 (3)
 φC

 
 

  uC = e1  

  uD = uC + e2 = e1 + e2 = 0 ⇒ e1 = −e2  

  e2 = e3  

 B  C  D  E

 uC  uD

 (1)  (2)  (3)

 B  C  D  E

 φC

 (1)  (2)  (3)

 φD

 B  C  D

 uC

 (1)  (2)

 (3)

 B  C  D

 (1)  (2)

 (3)
 φC
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Elements connected to common rigid bar 

  
θ = angle of rigid bar rotation =

e1
a
=

e2
a + b

⇒ e1 =
a

a + b
⎛
⎝⎜

⎞
⎠⎟

e2  

 B

 C  D a  b

 (2)

 (1)

 B  C  D

 a  b
 (1)

 (2)

 B  C  D

 a  b

 (2)

 (1)

 B  C  D

 a  b

 (2)
 (1)

 
 
 

  
θ = angle of rigid bar rotation =

e1
a
= −

e2
a + b

⇒ e1 = −
a

a + b
⎛
⎝⎜

⎞
⎠⎟

e2  

 B

 C  D a  b

 (2)

 (1)

 B  C  D

 a  b
 (1)

 (2)

 B  C  D

 a  b

 (2)

 (1)

 B  C  D

 a  b

 (2)
 (1)

 
 
 

  
θ = angle of rigid bar rotation =

e1
a
= −

e2
b

⇒ e1 = −
a
b

⎛
⎝⎜

⎞
⎠⎟

e2  

 B

 C  D a  b

 (2)

 (1)

 B  C  D

 a  b
 (1)

 (2)

 B  C  D

 a  b

 (2)

 (1)

 B  C  D

 a  b

 (2)
 (1)
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θ = angle of rigid bar rotation =

e1
a
=

e2
b

⇒ e1 =
a
b

⎛
⎝⎜

⎞
⎠⎟

e2  

 B

 C  D a  b

 (2)

 (1)

 B  C  D

 a  b
 (1)

 (2)

 B  C  D

 a  b

 (2)

 (1)

 B  C  D

 a  b

 (2)
 (1)

 
 
Planar truss – axial deformations 
Recall that all element angles 

 
θ j  must be measured CCW at the BASE of the jth element, 

as shown in the figure. 
   e1 = uCcosθ1 + vCsinθ1  

   e2 = uCcosθ2 + vCsinθ2  

   e3 = uCcosθ3 + vCsinθ3  

 B C

 D

 (2)

 (1)

 E

 (3)

 θ1

 θ2

 θ3

 x

 y
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Collinear elements – axial torques applied 

  φC = φ1  

  φD = φC + φ2 = φ1 + φ2  

  φE = φD + φ3 = φ1 + φ2 + φ3 = 0  

 B  C  D  E

 uC  uD

 (1)  (2)  (3)

 B  C  D  E

 φC

 (1)  (2)  (3)

 φD

 B  C  D

 uC

 (1)  (2)

 (3)

 B  C  D

 (1)  (2)

 (3)
 φC

 
 
 

  φC = φ1  

  φD = φC + φ2 = φ1 + φ2 = 0 ⇒ φ1 = −φ2  

 φ2 = φ3  

 B  C  D  E

 uC  uD

 (1)  (2)  (3)

 B  C  D  E

 φC

 (1)  (2)  (3)

 φD

 B  C  D

 uC

 (1)  (2)

 (3)

 B  C  D

 (1)  (2)

 (3)
 φC

 
 
 
 
f) Solving determinate and indeterminate problems 
Recall that for determinate problems (problems for which you are able to solve for the 
external reactions directly from the equilibrium equations), solving for internal forces or 
torques can be found directly from equilibrium relations. For indeterminate problems, one 
must simultaneously solve the equilibrium and compatibility equations. Other than that, the 
solution processes for determinate and indeterminate problems are identical. However, note 
that the reaction forces/torques for indeterminate problems typically depend on material 
and cross-sectional properties, whereas for determinate problems they do not. 
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Problem A.1 
A steel pipe with an outer diameter  do  and inner diameter  di , and a solid aluminum-alloy 
rod of diameter  d  form a three-segment system that undergoes axial deformation due to a 
single load  PC  acting on a collar at point C, as shown in the figure. Calculate the axial 
stresses in the three segments, and determine the displacements at connectors B and C. 

A

L1

C

D
B

PC

L2 L3

(1) (2) (3)

do di

 
 
SOLUTION 
 
Equilibrium 

 B  C

  F1

 uC

 (1)

 (2)  (3)  F1   F1   F2   F2   F2   F2   F3   F3   F3

 PC

  F1

  F2

 Bx

 
By

 P

  F2

  F2

  F1

  F1

  e1

  e2 a
 aΔθ

 B A

 C

 
   B : Fx∑ = −F1 + F2 = 0 ⇒ F1 = F2  (1) 

   C : Fx∑ = −F2 + F3 + FC = 0 ⇒ F2 = F3 + FC  (2) 
Force/elongation 

 
  
e1 =

F1L1
E1A1

  ;    
  
e2 =

F2L2
E2 A2

   ; 
  
e3 =

F3L3
E3A3

 (3) 

where 
  
A1 = π do

2 − di
2( ) / 4  and   A2 = A3 = πd2 / 4 . 

Compatibility 
   uB = e1    ;      uC = uB + e2 = e1 + e2  (4) 

 
  
uD = uC + e3 = e1 + e2 + e3 = 0 ⇒

F1L1
E1A1

+
F2L2
E2 A2

+
F3L3
E3A3

= 0  (5) 

Solve 
Combining (1), (2) and (5): 

 
  

F3 + FC( ) L1
E1A1

+
L2

E2 A2

⎛

⎝⎜
⎞

⎠⎟
+

F3L3
E3A3

= 0 ⇒ F3 = −
L1 / E1A1 + L2 / E2 A2

L1 / E1A1 + L2 / E2 A2 + L3 / E3A3
FC  

 
  
F1 = F2 = F3 + FC = 1−

L1 / E1A1 + L2 / E2 A2
L1 / E1A1 + L2 / E2 A2 + L3 / E3A3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

FC  
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σ1 =
F1
A1

= 1−
L1 / E1A1 + L2 / E2 A23

L1 / E1A1 + L2 / E2 A2 + L3 / E3A3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

FC
A1

TENSION( )

σ2 =
F2
A2

= 1−
L1 / E1A1 + L2 / E2 A2

L1 / E1A1 + L2 / E2 A2 + L3 / E3A3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

FC
A2

TENSION( )

σ3 =
F3
A3

= −
L1 / E1A1 + L2 / E2 A2

L1 / E1A1 + L2 / E2 A2 + L3 / E3A3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

FC
A3

COMPRESSION( )
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 B  C

  F1

 uC

 (1)

 (2)  (3)  F1   F1   F2   F2   F2   F2   F3   F3   F3

 PC

  F1

  F2

 Bx

 
By

 P

  F2

  F2

  F1

  F1

  e1

  e2 a
 aΔθ

 B A

 C

 B  C

  F1

 uC

 (1)

 (2)  (3)  F1   F1   F2   F2   F2   F2   F3   F3   F3

 PC

  F1

  F2

 Bx

 
By

 P

  F2

  F2

  F1

  F1

Problem A.2 
A rigid beam AD is supported by a smooth pin at B and by vertical rods atached to the 
beam at points A and C. Neglect the weight of the beam and assum that the rods are stress-
free when P = 0. Solve for the load carried the rods, the axial stress in each rod and the 
elongation of rod (1). Assume small rotations of the beam. 

A

L1

C
D

B

P

L2

(1)

(2)

a a b

 
 
Equilibrium 
 (1)    M B∑ = F1a + F2a − P(a + b) = 0   
 
Force/elongation 

 (2)  
  
e1 =

F1L1
E1A1

=
F1L
EA1

 

  (3)  
  
e2 =

F2L2
E2 A2

=
F2L
EA2

  

 
Compatibility (take note of signs) 

 (4)  
  
Δθ =

e1
a
=

e2
a

⇒ e1 = e2     

 
Solve 
Combining (2)-(4): 

 (5)  
  

F1L
EA1

=
F2L
EA2

⇒ F1 =
A1
A2

F2  

Combining (1) and (5): 

 
  

A1
A2

F2a + F2a − P(a + b) = 0 ⇒ F2 =
a + b

a 1+ A1 / A2( ) P  

 
  
F1 =

A1
A2

F2 =
a + b( ) A1 / A2( )
a 1+ A1 / A2( ) P   

 
  
σ1 =

F1
A1

=
a + b( ) A1 / A2( )
a 1+ A1 / A2( )

P
A1

TENSION( )   
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σ 2 =

F2
A2

= a + b
a 1+ A1 / A2( )

P
A2

TENSION( )   

 
  
e1 =

F1L
EA1

=
a + b( ) A1 / A2( )
a 1+ A1 / A2( )

PL
EA1

EXTENSION( )   
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  F1   F2

 Ax

 
Ay

  F2

  F2
  F1

  F1

  F3

  F3

  F3

  e1

  e2
Δθ

 B A  C

  −e3

 D

Problem A.3 
The structure shown consists of a rigid beam AD supported by three rods and a pin joing. 
Determine the loads carried by the rods when rod (2) is increased by an amount of  ΔT  and 
the temperature of the other rods is held constant. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION 
 
Equilibrium 
 (1)    M A∑ = F1 a( ) + F2 2a( )− F3 3a( ) = 0   
 
Force/elongation 

 (2)  
  
e1 =

F1L1
E1A1

=
F1L1
EA

  

 (3)  
  
e2 =

F2L2
E2 A2

+αΔTL2 =
F2
EA

+αΔT
⎛
⎝⎜

⎞
⎠⎟

L2   

 (4)  
  
e3 =

F3L3
E3A3

=
F3L3
EA

  

 
Compatibility (take notes of signs) 

 
  
Δθ =

e1
a
=

e2
2a

= −
e3
3a

⇒  

 (5)    e2 = 2e1    

 (6)    e3 = −3e1   
 
Solve 
Combining (3)-(5): 

 (7)  
  

F2
EA

+αΔT
⎛
⎝⎜

⎞
⎠⎟

L2 = 2
F1L1
EA

⇒ F2 = 2
L1
L2

F1 − EAαΔT   

A C DB

(1) (2)

a a a L3
(3)
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Combining (2), (4) and (6): 

 (8)  
  

F3L3
EA

= −3
F1L1
EA

⇒ F3 = −3
L1
L3

F1   

Combining (1), (7) and (8) gives: 

 

  

F1 a( ) + 2
L1
L2

F1 − EAαΔT
⎛

⎝⎜
⎞

⎠⎟
2a( )− −3

L1
L3

F1
⎛

⎝⎜
⎞

⎠⎟
3a( ) = 0 ⇒

F1 =
2EAαΔT

1+ 4L1 / L2 + 9L1 / L3
> 0 TENSION( )

 

and:  

 

  

F2 = 2
L1
L2

F1 − EAαΔT = − 1−
4L1 / L2

1+ 4L1 / L2 + 9L1 / L3

⎡

⎣
⎢

⎤

⎦
⎥EAαΔT < 0 COMPRESSION( )

F3 = −3
L1
L3

F1 = −
L1
L3

6EAαΔT
1+ 4L1 / L2 + 9L1 / L3

⎡

⎣
⎢

⎤

⎦
⎥ < 0 COMPRESSION( )
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 θ2 = 233.5°

 θ3 = 180°

 θ1 = 315°

  F2

  F1

  F3
 A  x

 53.13° 45°

 y

 P

Problem A.4 
The truss shown is made up of members having the same Young’s modulus E and with the 
same cross-sectional area A. Determine the horizontal and vertical displacements of joint 
A, along with the loads carried by the three truss members. 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION 
Equilibrium 
 

  
Fy∑ = F1sin45° + F2sin53.13° − P = 0  

 
  

Fy∑ = −F1cos45° + F2cos53.13° + F3 = 0  

or, 
   F1 / 2 + 0.8F2 = P  

   F3 = F1 / 2 − 0.6F2   
 
Force/elongation 

 
  
e1 =

F1L1
E1A1

=
F1L1
EA

  ;  
  
e2 =

F2L2
E2 A2

=
F2L2
EA

   ; 
  
e3 =

F3L3
E3A3

=
F3L3
EA

  

 
Compatibility (see angles in figure above) 

 
  
e1 = uAcosθ1 + vAsinθ1 =

uA

2
−

vA

2
   

   e2 = uAcosθ2 + vAsinθ2 = −0.6uA − 0.8vA  

   e3 = uAcosθ3 + vAsinθ3 = −uA   
 
Solve 
Combining above: 

 
  

F1L1
EA

=
uA

2
−

vA

2
⇒ F1 =

EA
2L1

uA − vA( )  

 
  

F2L2
EA

= −0.6uA − 0.8vA ⇒ F2 = −
EA
L2

0.6uA + 0.8vA( )  
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F3L3
EA

= −uA ⇒ F3 = −
EA
L3

uA  

Therefore, 

  

EA
2L1

uA − vA( )− EA
L2

0.48uA + 0.64vA( ) = P ⇒ 0.5
L1

− 0.48
L2

⎛

⎝⎜
⎞

⎠⎟
uA − 0.5

L1
+ 0.64

L2

⎛

⎝⎜
⎞

⎠⎟
vA = P

EA  

  
− EA

L3
uA = EA

2L1
uA − vA( ) + EA

L2
0.36uA + 0.48vA( ) ⇒ 0.5

L1
+ 0.36

L2
+ 1

L3

⎛

⎝⎜
⎞

⎠⎟
uA + − 0.5

L1
+ 0.48

L2

⎛

⎝⎜
⎞

⎠⎟
vA = 0

 Solve the above two equations for  uA   and vA  .
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Problem A.5 
A uniform shaft with fixed ends A and D is subjected to external torques at B and C. 
Determine the maximum shear stress in each of the three segments of the shaft and the 
angle of twist at B. 

A

C
D

B

L / 4

(1) (2) (3)

d

L / 4L / 2

T02T0

x

 
SOLUTION 
Equilibrium 

 B  C

 (1)  (2)  (3)

  T1   T1   T1   T2   T2   T2   T2   T3   T3   T3

  2T0   T0

 
   B : Mx∑ = −T1 − 2T0 + T2 = 0 ⇒ T2 = T1 + 2T0  (1) 

   C : Mx∑ = −T2 + T3 + T0 = 0 ⇒ T3 = T2 − T0 = T1 + T0  (2) 
 
Torque/angle of twist 

 
  
φ1 =

T1L1
G1IP1

=
T1L

2GIP
  ;    

  
φ2 =

T2L2
G2IP2

=
T2L

4GIP
   ; 

  
φ3 =

T3L3
G3IP3

=
T3L

4GIP
 (3) 

where   IP = π d / 2( )4 / 2 = πd4 / 32 . 
Compatibility 
   φB = φ1    ;      φC = φB + φ2 = φ1 + φ2  (4) 

 
  
φD = φC +φ3 = φ1 +φ2 +φ3 = 0 ⇒

T1L
2GIP

+
T2L

4GIP
+

T3L
4GIP

= 0 ⇒  

   2T1 + T2 + T3 = 0  (5)  
Solve 
Combining (1), (2) and (5): 
 

  
0 = 2T1 + T2 + T3 = 2T1 + T1 + 2T0( ) + T1 + T0( ) = 4T1 + 3T0 ⇒ T1 = −0.75T0  

   T2 = T1 + 2T0 = −0.75T0 + 2T0 = 1.25T0  

   T3 = T1 + T0 = −0.75T0 + T0 = 0.25T0  
and, 
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τ1( )max

=
T1 d / 2( )

IP
= −0.75

T0d / 2

πd4 / 32
= −12

π
T0

d3  

 
  
τ2( )max

=
T2 d / 2( )

IP
= 1.25

T0d / 2

πd4 / 32
= 20

π
T0

d3  

 
  
τ3( )max

=
T3 d / 2( )

IP
= 0.25

T0d / 2

πd4 / 32
= 4
π

T0

d3
 

and: 

 
  

φB = φ1 =
T1L

2GIP
=

−0.75T0( )L

2G πd4 / 32( ) = −
12T0L
πGd4
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