Example 15.4

A crank is fixed to a stationary support at O and is loaded with a force P The crank has a solid cross section of diameter $d=1$ in and is made of a ductile material with a yield strength of $\sigma_{Y}=100 \mathrm{ksi}$. A factor of safety of $F S=2.5$ was used in the design of the crank.

Using the maximum shear stress theory, what is the maximum load P allowed?

SOLUTION

Equilibrium

$$
\sum \vec{M}_{A}=7 P \hat{i}-14 P \hat{j}-T \hat{i}+M \hat{j}=\overrightarrow{0} \Rightarrow
$$

$$
\hat{i}: \quad M=14 P
$$

$$
\hat{j}: T=7 P
$$

Stress element (look at stress element on top face of bar at point "a") For this loading (no shear stress from bending at " $\mathrm{a} "$ - why?):

$$
\sigma=\frac{M(d / 2)}{I}=\frac{7 P d}{I}
$$

$$
\tau=\frac{T(d / 2)}{J}=\frac{7 P d}{2 J}
$$

where:

$$
\begin{aligned}
& I=\frac{\pi}{64} d^{4} \\
& I_{P}=\frac{\pi}{32} d^{4}=2 I
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
& \tau=\frac{7 P d}{2\left(\pi d^{4} / 32\right)}=\frac{112 P}{\pi d^{3}} \\
& \sigma=\frac{7 P d}{\pi d^{4} / 64}=\frac{448 P}{\pi d^{3}}=4 \tau
\end{aligned}
$$

Stress transformation/Mohr's circle

From the above state of stress:

$$
\begin{aligned}
& \sigma_{\text {ave }}=-\frac{\sigma}{2}=-224 \frac{P}{\pi d^{3}} \\
& R=\sqrt{\left(\frac{\sigma}{2}\right)^{2}+\tau^{2}}=\sqrt{\left(\frac{224 P}{\pi d^{3}}\right)^{2}+\left(\frac{112 P}{\pi d^{3}}\right)^{2}}=250.4 \frac{P}{\pi d^{3}}
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
& \sigma_{P 1}=\sigma_{a v e}+R=(-224+250.4) \frac{P}{\pi d^{3}}=26.4 \frac{P}{\pi d^{3}} \\
& \sigma_{P 2}=\sigma_{a v e}-R=(-224-250.4) \frac{P}{\pi d^{3}}=-474.5 \frac{P}{\pi d^{3}}
\end{aligned}
$$

Since $\sigma_{P 1}$ and $\sigma_{P 2}$ are of opposite signs, then $|\tau|_{\text {max }, a b s}=|\tau|_{\text {max }, \text { in-plane }}=R$ (see figure):

$$
|\tau|_{m a x, a b s}=R=250.5 \frac{P}{\pi d^{3}}
$$

Therefore:

$$
\begin{aligned}
& F S_{S}=\frac{\sigma_{Y}}{2|\tau|_{\text {max }, a b s}}=\frac{100\left(10^{3}\right)}{(2)(250.5)} \frac{\pi d^{3}}{P}=200 \frac{\pi d^{3}}{P} \Rightarrow \\
& P=200 \frac{\pi d^{3}}{F S_{S}}=200 \frac{\pi(1)^{3}}{2.5}=251 \mathrm{lb}
\end{aligned}
$$

