Example 14.4-SOLUTION

A vertical force of P is applied to the end of a pipe wrench CD, whose handle is parallel to the z-axis. Determine the pipe has an outer diameter of d and wall thickness of t. Determine the principal stresses at points A and B on the cross section of the pipe.

SOLUTION

Equilibrium

$$
\begin{aligned}
\sum F_{y} & =-P+F_{y}=0 \Rightarrow F_{y}=P \\
\sum M_{O} & =-T_{x} \hat{i}+M_{z} \hat{k}+\vec{r}_{C / O} \times \vec{P}=\overrightarrow{0} \\
& =-T_{x} \hat{i}+M_{z} \hat{k}+(b \hat{i}+L \hat{k}) \times(-P \hat{j}) \\
& =\left(-T_{x}+P L\right) \hat{i}+\left(M_{z}-P b\right) \hat{k} \Rightarrow
\end{aligned}
$$

$\hat{i}: \quad T_{x}=P L$
$\hat{k}: \quad M_{z}=P b$

Stresses at A and B

internal resultant	stress @ A	stress @ \mathbf{B}
F_{y}	0	$\tau_{1}=\frac{F_{y} Q}{I t}=\frac{P Q}{I t}$
T_{x}	$\tau_{2}=\frac{T_{x}(d / 2)}{2 I_{P}}=\frac{P L d}{2 I_{P}}$	$\tau_{2}=\frac{T_{x}(d / 2)}{2 I_{P}}=\frac{P L d}{2 I_{P}}$
M_{z}	$\sigma=\frac{M_{z}(d / 2)}{I}=\frac{P b d}{2 I}$	0

Stress elements for A and B

stress element for A

stress element for B

Principal stresses

At A: $\quad \sigma_{a v e}=\frac{\sigma}{2}=\frac{P b d}{4 I} ; \quad R=\sqrt{\left(\frac{\sigma}{2}\right)^{2}+\tau_{2}^{2}}=\sqrt{\left(\frac{P b d}{4 I}\right)^{2}+\left(\frac{P L d}{2 I_{P}}\right)^{2}} ; \quad \sigma_{P 1,2}=\sigma_{a v e} \pm R$
At B: $\quad \sigma_{\text {ave }}=0 ; \quad R=\sqrt{0+\tau_{2}^{2}}=\frac{P L d}{2 I_{P}} ; \quad \sigma_{P 1,2}= \pm R$

