Summary: Absolute maximum shear stress

PROBLEM: For plane stress, the stress transformation equations produces a Mohr's circle of radius *R* and center at $(\sigma, \tau) = (\sigma_{ave'}, 0)$. Depending on the relative sizes of *R* and $\sigma_{ave'}$, we have three possibilities of Mohr's circle shown below. Here we rotate about *z* to where *n* is a principal axis, as shown below.

Subsequent rotation about the *n*-axis produces a Mohr's circle between 0 and σ_{P2} on the σ -axis. Similarly, an alternate rotation about the *t*-axis produces a Mohr's circle between 0 and σ_{P1} on the σ -axis.

CONCLUSION: The absolute maximum shear stress, $|\tau|_{max,abs}$, for each of the three cases is shown below. Do not memorize these results - simply draw your three Mohr's circles, and your figure gives you the answer!

me 323- cmk