Summary: Absolute maximum shear stress

PROBLEM: For plane stress, the stress transformation equations produces a Mohr's circle of radius R and center at $(\sigma, \tau)=\left(\sigma_{\text {ave }}, 0\right)$. Depending on the relative sizes of R and $\sigma_{\text {ave }}$, we have three possibilities of Mohr's circle shown below. Here we rotate about z to where n is a principal axis, as shown below.

Subsequent rotation about the n-axis produces a Mohr's circle between 0 and $\sigma_{P 2}$ on the σ-axis. Similarly, an alternate rotation about the t-axis produces a Mohr's circle between 0 and $\sigma_{P 1}$ on the σ-axis.
CONCLUSION: The absolute maximum shear stress, $|\tau|_{\text {max, abs }}$, for each of the three cases is shown below. Do not memorize these results - simply draw your three Mohr's circles, and your figure gives you the answer!

$|\tau|_{m a x, a b s}=\sigma_{P 1} / 2$

$|\tau|_{m a x, a b s}=R$

$|\tau|_{m a x, a b s}=\left|\sigma_{P 2}\right| / 2$

me 323-cmk

