Summary: Mohr's circle

OBSERVATION: Consider the stress transformation derived earlier:

$$
\begin{aligned}
& \sigma_{n}(\theta)=\frac{\sigma_{x}+\sigma_{y}}{2}+\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right) \cos 2 \theta+\tau_{x y} \sin 2 \theta \\
& \tau_{n t}(\theta)=-\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right) \sin 2 \theta+\tau_{x y} \cos 2 \theta
\end{aligned}
$$

When plotted in the (σ, τ)-plane, this set of equations represents a circle of radius R and centered at point $(\sigma, \tau)=\left(\sigma_{\text {ave }} 0\right)$ where:

$$
\sigma_{\text {ave }}=\frac{\sigma_{x}+\sigma_{y}}{2} \quad \text { and } \quad R=\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}
$$

COMMENTS:

- In order to maintain consistency in directions of rotation, the τ-axis is typically drawn downwardly-positive.
- The values of $\sigma_{P 1}, \sigma_{P 2}$ and $|\tau|_{\text {max }}$ are readily observed from Mohr's circle.
- By locating the x-axis in Mohr's plane, $(\sigma, \tau)=\left(\sigma_{x} \tau_{x y}\right)$, we can tie rotations in the physical plane to rotations in Mohr's plane.
- A rotation of θ in the physical plane corresponds to a rotation of 2θ in Mohr's plane. This is seen in the above stress transformation

me 323-cmk equations.

