Summary: work/energy and Castigliano

• General strain energy and work expressions:

member loading	strain energy	external work
axial, P	$U_{axial} = \frac{1}{2} \int_{0}^{L} \frac{F^2}{EA} dx$	$W_{axial} = \frac{1}{2}F_0e$
torque, T	$U_{torsion} = \frac{1}{2} \int_{0}^{L} \frac{T^2}{GI_P} dx$	$W_{torsion} = \frac{1}{2}T_0\phi$
bending moment, M	$U_{\sigma} = \frac{1}{2} \int_{0}^{L} \frac{M^2}{EI} dx$	$W_{moment} = \frac{1}{2} M_0 \theta$
shear force, V	$U_{\tau} = \frac{1}{2} \int_{0}^{L} \frac{f_{S} V^{2}}{GA} dx$	$W_{shear} = \frac{1}{2}P_0y$

• Work/energy equation: U = W

A single equation regardless of loading. Not useful for finding deflections when loadings act at multiple points.

- Castigliano's theorem determinate structures: $\Delta_i = \frac{\partial U}{\partial P}$
 - Can be used for finding deflections at a single point even in the presence of loadings at multiple points.
 - Useful only when loading is applied at points where deflections are sought. If no loading acts where you want to find deflection, add a DUMMY loading $P_{d'}$ solve for deflection, and then set $P_d = 0$.