Summary: Beam deflection by integration (indeterminate)

FUNDAMENTAL EQUATIONS
differential form integral form

$M(x)=\frac{E I}{\rho} \approx E I \frac{d \theta}{d x}$	$\theta(x)=\theta\left(x_{1}\right)+\frac{1}{E I} \int_{x_{1}}^{x} M(s) d s$
$\tan \theta \approx \theta=\frac{d v}{d x}$	$v(x)=v\left(x_{1}\right)+\int_{x_{1} \uparrow \theta}^{x} \theta(s) d s$

METHOD

- Draw FBD of entire structure and write down equilibrium equations in terms of reactions.
- Divide beam into sections based on changes in supports or loadings.
- For each section:
- Make cut through section, and determine $M(x)$.
- Integrate $M(x) / E I$ to find $\theta(x)$.
- Integrate $\theta(x)$ to find $v(x)$.
- Enforce boundary conditions on θ and v.
- Match θ and v across boundaries of sections.

- Solve for unknown reactions using boundary conditions and equilibrium equations.

