
 

 

16. Energy methods 
 
 
Objectives: 
To develop expressions for the strain energy for loaded structural elements and to use 
these expressions for the determination of elastic deformations in the structural elements 
due to the loadings. 
 
 
Background: 

• Work/energy equation 
For a given system, the total work done on the system is equal to the change in 
total energy: 
 W (nc) =∆ T + ΔU  
where W (nc)  is the work done on the system by non-conservative forces, ΔT  is 
the change in kinetic energy and ΔU  is the change in potential energy. 

• Equilibrium 
For a system in equilibrium, the work/energy equation reduces to: 
 W nc( ) = ΔU  
which says that the change in potential energy is equal to the work done on the 
system. 

• Strain energy in springs 
Recall that the potential energy in a spring is given by:  

 U = 1
2
kΔ2  

where k  is the stiffness of the spring and Δ  is the stretch/compression in the 
spring. Since this potential energy results from the change in strain in the spring, 
this is often times referred to as the “strain energy” in the spring. 
 
  

Lecture topics: 
a) Expressions for strain energy in a structural element. 

b) Using the work-energy principle for determining deflections. 
c) Castigliano’s second theorem for determinate structures. 

d) Castigliano’s second theorem for indeterminate structures. 
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Lecture notes 
a) Strain energy expressions 
 
Motivating example #1 
Consider a spring of stiffness k acted upon by a constant magnitude force P. Assume that 
the spring is uncompressed before the application of the force. Let e represent the 
compression in the spring resulting from the application of the force P . Write down the 
equilibrium form of the work energy equation for the system. 
 

 
For equilibrium, we know that P = ke  for all deformations e. Therefore, the work done 
by P under equilibrium conditions is: 

 W P( ) = Pde
0

e

∫ = k ede
0

e

∫ = 1
2
ke2 = 1

2
Pe  

We know that the potential (strain) energy in the spring can be written down directly as: 

U = 1
2
ke2 . However, for practice, let’s derive this expression. To do so, recall that the 

change in potential of a conservative force is equal to the negative of the work done by 
the force: 

 
W (sp) = − kede

0

e

∫ ; " -" since spring force opposes motion

= − 1
2
ke2

 

Therefore, 

 U = −W (sp) = 1
2
ke2   (which agrees with what we already knew above) 

From this, the work/energy equation for equilibrium is: 

 W P( ) =U ⇒ 1
2
Pe = 1

2
ke2  
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Alternate representation:  
Since we are considering equilibrium, P = ke , we could have written the strain energy in 
the spring as: 

 U = 1
2
ke2 = 1

2
k P

k
⎛
⎝⎜

⎞
⎠⎟
2
= P

2

2k
 

This representation directly shows the dependence of the strain energy on both the 
applied load and the stiffness of the spring. For this expression, the work energy equation 

 W
P( ) =U takes on the form of: 

 
1
2
Pe = P

2

2k
  

from which we can recover the expected expression for the static elongation of the 
spring: 

 e = P
k
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Motivating example #2 
Consider a straight rod (with constant cross-sectional area A) under the action of an 
extensive axial load P and fixed to ground on its left end. Determine an expression for the 
strain energy in the rod as a result of the axial load P. 
 

 
 
The axial load P is related to the axial stress through: 

 P =σ xA  (1) 

For a linearly elastic material: 

 σ x = Eε x = E
du
dx

 (2) 

And, the elongation in the rod is given by: 

 e = L du
dx

⇒ du
dx

= e
L

 (3) 

Combining (1)-(3) gives: 

 P = EA
L
e  (4) 

The work done by the axial load P  is given by: 

 W P( ) = Pde
0

e

∫ = EA
L
ede

0

e

∫ = 1
2
EA
L
e2 = 1

2
Pe  (5) 

Since U =W (P) , the strain energy in the rod is given by: 

 U = 1
2
Pe  (6) 

before deformation 

after deformation 
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Alternate representation:  
From equation (1),  

 e = PL
EA

 

we can write the strain energy in the rod as: 

 U = 1
2
P2L
EA

 (7) 

This representation directly shows the dependence of the strain energy on both the 
applied load and the material and properties of the rod. For this expression, the work 

energy equation  W
P( ) =U takes on the form of: 

 
1
2
Pe = 1

2
P2L
EA

  

from which we can recover the expected expression for the static elongation of the 
spring: 

 e = PL
EA
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General expressions for strain energy and work 
The total strain energy for a linearly elastic body can be written as: 

 U = u dV
vol
∫  (8) 

where: 

 
u = strain energy density function

= 1
2

σ x ε x −αΔT( ) +σ y ε y −αΔT( ) +σ z εz −αΔT( ) +τ xyγ xy +τ xzγ xz +τ yzγ yz⎡
⎣

⎤
⎦

(9) 

From this general expression above, we will derive strain energy functions for a number 
of types of components, including: rods, shafts and bending beams. 
 
Also, recall that the work due a force P acting through a distance   e1  can be written as: 

 
  
W P( ) = P de

0

e1

∫   

And, the work due to a couple M acting through an angle  θ1  can be written as: 

 
  
W M( ) = M dθ

0

θ1

∫  

Suppose that these forces and moments act slowly (such that dynamic effects are not 
significant) and with linear relationships between P and e, and between M and θ , as 
indicated by the plots below. 
 
 
 
 
 
 
 
 
 
 
 
In this case, the work due to P and and the work due to M (the areas under the respective 
P vs. e and M vs. θ  curves) can be written as: 

 
  
W P( ) = 1

2
P e1( )e1   

 
  
W M( ) = 1

2
M e1( )θ1   

Note that the second expression above applies to both a torque T acting through a twist 
angle of φ  and to a bending moment M acting through an angle of beam rotation θ . 
 

e
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Component: rod carrying axial load P 
Here we consider a rod of length L, cross-sectional area A and Young’s modulus E 
carrying an axial load of P. For axially-loaded rods, we have the following stress and 
strain functions: 

 σ x = E(x)
du(x)
dx

=
OR P(x)

A(x)
 

 ε x =
du(x)
dx

=
OR P(x)

A(x)E(x)
 

and, in addition, dV = A(x)dx . 
 
Substituting these into the general strain energy expression (8) gives EITHER: 

 U = 1
2

σ xε x Adx
0

L

∫ = 1
2

EA du
dx

⎛
⎝⎜

⎞
⎠⎟
2
dx

0

L

∫  (10a) 

OR 

 U = 1
2

σ xε x Adx
0

L

∫ = 1
2

P2

EA
dx

0

L

∫  (10b) 

where, in general, E , A , P  and u  may all be functions of x. 
 
For the special case where E , A , P  and u  are all constants in x, expression (10b) 
reduces to: 

 U = 1
2
P2L
EA

 (10c) 

as we derived earlier. 
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Component: circular shaft carrying torque T 
Here we consider a circular cross section shaft of length L, polar area moment  IP  and 
shear  modulus G carrying a torque of T. For a circular shaft carrying a torque T  along 
the x-axis, we have the following stress and strain functions: 

 τ = G(x)ρ dφ(x)
dx

=
OR T (x)ρ

IP (x)
 

 γ = ρ dφ(x)
dx

=
OR Tρ

GIP
 

where ρ  is the radial distance from the centerline of the shaft cross section, φ  is the 
angle of twist and, in addition, dV = dAdx . 
 
Substituting these into the general strain energy expression (8) gives EITHER: 

 U = 1
2

τ γ dAdx
area
∫

0

L

∫ = 1
2

ρ2 dA
area
∫

⎛

⎝
⎜

⎞

⎠
⎟G

dφ
dx

⎛
⎝⎜

⎞
⎠⎟
2
dx

0

L

∫ = 1
2

GIP
dφ
dx

⎛
⎝⎜

⎞
⎠⎟
2
dx

0

L

∫  (11a) 

OR 

 U = 1
2

τ γ dAdx
area
∫

0

L

∫ = 1
2

ρ2 dA
area
∫

⎛

⎝
⎜

⎞

⎠
⎟
T 2

GIP
2 dx

0

L

∫ = 1
2

T 2

GIP
dx

0

L

∫  (11b) 

where IP = ρ2 dA
area
∫ . Here G , IP , T  and φ  may all be functions of x. 

 
For the special case where G , IP , T  and φ  are all constants in x, expression (11b) 
reduces to: 

 U = 1
2
T 2L
GIP

 (11c) 
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rectangle)
  
fs =

6
5

circle)
  
fs =

10
9

thin,walled)tube)   fs = 2

Component: bending beam – flexural strain energy 
Here we consider a thin beam of length L, second area moment I and Young’s modulus  
modulus E. The transverse deflection of the beam is v(x), the bending moment in the 
beam is M(x) and with y being the cross sectional coordinate in the direction transverse to 
the beam. For a thin Euler-Bernoulli beam we have the following stress and strain 
components corresponding to the normal (flexural) stress: 

 σ x = −E(x)y d
2v(x)
dx2

= − M (x)y
I(x)

 

 ε x = −y d
2v(x)
dx2

= M (x)y
E(x)I(x)

 

and, in addition, dV = dAdx . Here we will assume that the Young’s modulus does not 
vary across the beam’s cross-section. Substituting these into the general strain energy 
expression (8) gives EITHER: 

 U = 1
2

σ x ε x dAdx
area
∫

0

L

∫ = 1
2

y2 dA
area
∫

⎛

⎝
⎜

⎞

⎠
⎟ E

d2v
dx2

⎛

⎝⎜
⎞

⎠⎟

2

dx
0

L

∫ = 1
2

EI d2v
dx2

⎛

⎝⎜
⎞

⎠⎟

2

dx
0

L

∫  (12a) 

OR 

 U = 1
2

σ x ε x dAdx
area
∫

0

L

∫ = 1
2

y2 dA
area
∫

⎛

⎝
⎜

⎞

⎠
⎟
M 2

EI 2
dx

0

L

∫ = 1
2

M 2

EI
dx

0

L

∫  (12b) 

where I = y2 dA
area
∫ . Here E , I , M  and v  may all be functions of x. 

 
Component: bending beam – shear strain energy 
For a bending beam, we also have energy that is attributed to shear stress/strain. For the 
same notation as before, we can write for the shear stress and shear strain: 

 τ xy =
V (x)Q(x, y)
I(x)t(y)

  

 γ xy =
1
G
τ xy =

1
G
V (x)Q(x, y)
I(x)t(y)

  

Substituting into the general strain energy expression (8) gives: 

 

U = 1
2

τ xy γ xy dAdx
area
∫

0

L

∫

= 1
2

Q2(x, y)
t2(y)

dA
area
∫

⎛

⎝
⎜

⎞

⎠
⎟
V 2

GI 2
dx

0

L

∫ = 1
2

fsV
2

GA
dx

0

L

∫
  

where: 

 fs (x) =
A(x)
I 2(x)

Q2(x, y)
t2(y)

dA
area
∫ = " form factor" for the beam cross section  Note that 

the form factor expression above has been calculated for some common cross-sections, as 
presented to the right. 

D JIE da dx

It
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Summary 
The strain energy functions for the three types of members investigated here (axially-
loaded members, torsionally-loaded members and members with flexural and shear 
stresses due to bending) are summarized below. 
 
 

Member loading type Strain energy: load-based Strain energy:  
displacement-based 

axial 
  
U = 1

2
F 2dx
EA0

L

∫   
  
U = 1

2
EA du

dx
⎛
⎝⎜

⎞
⎠⎟0

L

∫
2

dx   

torsion 
  
U = 1

2
T 2

GI p

dx
0

L

∫   
  
U = 1

2
GI p

dφ
dx

⎛
⎝⎜

⎞
⎠⎟0

L

∫
2

dx   

bending - flexural 
  
Uσ = 1

2
M 2

EI0

L

∫ dx   
  
Uσ

1
2

EI d 2u
dx2

⎛
⎝⎜

⎞
⎠⎟0

L

∫
2

dx   

bending - shear 
  
Uτ =

1
2

fs V 2

GA0

L

∫ dx    

 
 
In this chapter, we will focus on the use of the load-based formulations of strain energy 
listed above. In a later chapter when we work with the finite element formulation, we will 
use the dispacement based formulation. 
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c) Work-energy equation 
Recall that the work-energy equation for a system can be written as: 

  W = T +U   
For static equilibrium, the change in kinetic energy T is zero. Therefore, the above 
reduces to: 

  W =U   
The usage of the work-energy equation above is very limited in its usefulness in 
displacement analysis. For simple systems of having an applied load acting at only a 
single point, the work-energy equation can be used to determine the static deflection of 
the structure at the point at which the load is applied. For more complicated loads, we 
will still have only a single work-energy equation for loads at multiple points; however, 
we will need multiple equations to solve for displacements. In that case, we need to 
appeal to more advanced methods, such as Castigliano’s methods that follow. 
 
 
d) Castigliano’s Second Theorem – applied to determinate structures 
Consider a determinate linearly elastic deformable body or system acting upon by N 
forces Pi ; i = 1,2,...,N . Among all possible equilibrium configurations of the system, 
the actual configuration is the one for which: 

 Δi =
∂U
∂Pi

; i = 1,2,...,N  

where Δi  is the displacement corresponding to and in the direction of the force Pi , and 
U  is the strain energy for the system. 
 
 
e) Castigliano’s Second Theorem – applied to indeterminate structures 
Consider an indeterminate linearly elastic deformable body or system acting upon by N 
forces Pi ; i = 1,2,...,N . Since the system is indeterminate, there will be a number (NR ) 
of redundant forces in the strain energy function: Ri ; i = 1,2,...,NR . Among all possible 
equilibrium configurations of the system, the actual configuration is the one for which: 

 Δi =
∂U
∂Pi

; i = 1,2,...,N  

 0 = ∂U
∂Ri

; i = 1,2,...,NR  

where Δi  is the displacement corresponding to and in the direction of the force Pi  (or Ri
), and U  is the strain energy for the system. 
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Comments on the usage of Castigliano’s theorem for deflection analysis 
a) For determinate structures, one is able to solve for the external reactions directly 

through equilibrium equations. As a result, it is possible to also find the internal 
resultants (such as shear forces, axial forces and bending moments), and 
consequently, the strain energy for the structure can be written in terms of only the 
applied forces that are used for find deflections. 

b) For indeterminate structures, one has too few equilibrium equations for 
determining the external reactions on the structure; therefore, it is not possible to 
find internal resultants, and, consequently, the strain energy will include many of 
these unknown reactions. Suppose that the structure of interest has an 
indeterminacy of order  NR ; that is, there are  NR  too few equations available for 

finding reactions. Therefore, we have  NR  redundant forces/couples. For these 
problems, one needs to first choose which reactions that will be considered 
redundant, and write the equilibrium equations so that the remaining reactions are 
in terms of these redundant forces/couples. The additional  NR  equations needed 
for determining the reactions are found from the second Castigliano equation 
above:   0 = ∂U / ∂Ri ; i = 1,2,..., NR . Once these reactions are found, then the first 
set of Castigliano equations are used to find the desired deflections. 

c) Note that Castigliano’s theorem allows us to determine components of 
displacements only at points where loadings are applied and only components of 
displacements that are aligned with the loadings. If the structure is not acted upon 
by a force at a point and/or along a line of action for which deflections are needed, 
we simply need to apply a “dummy” force/couple to the structure, treating as a 
regular applied load. After applying Castigliano’s theorem, then set the dummy 
force/couple to zero.  
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Example 16.1 
 
A rod having a solid cross section of area A and made up of a material with a Young’s 
modulus of E is made up of components (1) and (2).  Components (1) and (2) are joined 
by rigid connector C, with component (1) being attached to rigid wall at end B and with a 
second connector at end D of (2). Loads   P0  and   F0  act on connectors C and D. 

a) Determine the strain energy stored in the rod in terms of the applied loads and the 
work done by the applied loads under static equilibrium conditions. 

b) Write down the work-energy equation for the system under static equilibrium 
conditions. Explain why the work-energy method cannot be used directly to 
determine the static displacements of either C or D. 

c) Use Castigliano’s theorem to determine the static displacements of C and D. 
 

 
 
 
 
 
 
 
  

 x
  P0

 B  C

  L / 2   L / 2

  F0

 D

 (1)  (2)
O
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Example 16.2 
A shaft (made up of a material with a Young’s modulus of E) is composed of elements 
(1) and (2), where (1) is a hollow circular tube and (2) has a solid circular cross section. 
Elements (1) and (2) are joined by a rigid connector C, with (1) attached to fixed wall at 
B and (2) joined to a rigid connector at D. A torque   T0  is applied to connector D. 

a) Determine the strain energy stored in the shaft in terms of the applied torque   T0  
and the work done by the applied torque under static equilibrium conditions. 

b) Write down the work-energy equation for the system under static equilibrium 
conditions. Use the work-energy method to determine the static rotation of 
connector D. 

c) Use Castigliano’s theorem to determine the static rotation of D. 
 

 
 
  

 x
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Example 16.3 
 
A load P  is applied at the midspan of the beam of length L.  The beam has a rectangular 
cross section, with the cross-sectional dimensions shown. The beam is made up of a 
material with a Young’s modulus E and Poisson’s ratio of ν . 

a) Determine the strain energy stored in the beam in terms of the load P and the 
work done by the applied load P under static equilibrium conditions. 

b) Write down the work-energy equation for the system under static equilibrium 
conditions. Use the work-energy method to determine the static deflection of 
ppoint C of the beam. 

c) Use Castigliano’s theorem to determine the static deflection of C. 
d) Identify the contributions to your solution in c) above that come from flexure 

stresses and those contributions that come from shear stresses. Compare the sizes 
of these contributions for   b / L = 0.05  and  ν = 0.4 . Are the contributions from 
shear effects signficant? 
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Example 16.4 
 
Determine the deflection of node D on the truss. 
 

 
 
Equilibrium analysis 

 
Fy∑ = −P − F2sinθ = 0 ⇒ F2 = −

P
sinθ

= −
5P
3

 

Fx∑ = −F1 − F2cosθ = 0 ⇒ F1 = −F2cosθ =
P
tanθ

=
4P
3

 

 
Strain energy in truss 

U =U1 +U2 =
1
2
F1
2L1
EA

+
1
2
F2
2L2
EA

; L2 =
L

cosθ
=
5L
4

=
1
2EA

4P
3

⎛
⎝⎜

⎞
⎠⎟
2
L + −

5P
3

⎛
⎝⎜

⎞
⎠⎟
2 5L

4
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =

21
8
P2L
EA

 

 
Castigliano’s theorem 

vD =
∂U
∂P

=
21
4
PL
EA

in the direction of P − DOWN( )  

  

P

B DEA, L

C

EA

3

4

P

B DEA, L

C

EA

3

4

P

F1F1F1

F2

F2

F2

θ

θ = tan−1(3 / 4) = 36.87°

x

y

P

F1F1F1

F2

F2

F2

θ

θ = tan−1(3 / 4) = 36.87°

x

y

Pdx

A 8
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To find horizontal component of deflection of D, add horizontal dummy force at D and 
apply Castigliano. 
 
Equilibrium analysis 

 
Fy∑ = −P − F2sinθ = 0 ⇒ F2 = −

P
sinθ

= −
5P
3

 

Fx∑ = −F1 − F2cosθ + Pdx = 0 ⇒ F1 = −F2cosθ + Pdx =
4P
3

+ Pdx  

 
Strain energy in truss 

U =U1 +U2 =
1
2
F1
2L1
EA

+
1
2
F2
2L2
EA

; L2 =
L

cosθ
=
5L
4

=
1
2EA

4P
3

+ Pdx
⎛
⎝⎜

⎞
⎠⎟
2
L + −

5P
3

⎛
⎝⎜

⎞
⎠⎟
2 5L

4
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

 

 
Castigliano’s theorem 

uD = ∂U
∂Pdx

= 1
EA

4P
3

+ Pdx
⎛
⎝

⎞
⎠ L

⎡
⎣⎢

⎤
⎦⎥PDx=0

= 4PL
3EA

(same direction as Pdx − to RIGHT )  

  

P

B DEA, L

C

EA

3

4

P

F1F1F1

F2

F2

F2

θ

θ = tan−1(3 / 4) = 36.87°

x

y

P

F1F1F1

F2

F2

F2

θ

θ = tan−1(3 / 4) = 36.87°
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Example 16.5 
Determine the vertical deflection of point D ofnthe structural member shown. The cross 
section of the member is rectangular and constant throughout. Use A = 2in2 , I = 1.3in4 , 

  E = 30×106 psi  and  ν = 0.3 . 
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Example 16.6 
Determine the vertical deflection and beam rotation at end B of the cantilevered beam 
shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Vertical deflection at B: apply “dummy” load Pd  at end B 
 

 
 
Determining internal bending moment 

ME∑ = M − Pdx +
w0x

2

2L
⎛
⎝⎜

⎞
⎠⎟

x
3

⎛
⎝⎜

⎞
⎠⎟ = 0 ⇒ M (x) = − w0x

3

6L
+ Pdx  

 
Strain energy in beam (ignoring contributions from shear stress/strain) 

U = 1
2

M 2

EI
dx

0

L

∫ = 1
2EI − w0x

3

6L
+ Pdx

⎛
⎝⎜

⎞
⎠⎟
2
dx

0

L

∫  

 
Castigliano’s theorem 

vB = ∂U
∂Pd Pd=0

= 1
2EI

2 − w0x
3

6L
+ Pdx

⎛
⎝⎜

⎞
⎠⎟
(x)dx

0

L

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥Pd=0

= 1
EI − w0x

4

6L
+ Pdx

2⎛
⎝⎜

⎞
⎠⎟
dx

0

L

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥Pd=0

= 1
EI − w0x

5

30L
+ Pd
3
x3

⎡
⎣⎢

⎤
⎦⎥x=0

x=L⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪Pd=0
= 1
EI − w0L

4

30
+ PdL

3

3
⎡
⎣⎢

⎤
⎦⎥Pd=0

= − w0L
4

30EI
DOWN( )
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⎛
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Beam rotation at B: need to apply “dummy” couple Md  at end B 
 

 
 
 
Determining internal bending moment 

ME∑ = M +Md +
w0x

2

2L
⎛
⎝⎜

⎞
⎠⎟

x
3

⎛
⎝⎜

⎞
⎠⎟ = 0 ⇒ M (x) = − w0x

3

6
−Md  

 
Strain energy in beam (ignoring contributions from shear stress/strain) 

U = 1
2

M 2

EI
dx

0

L

∫ = 1
2EI − w0x

3

6L
−Md

⎛
⎝⎜

⎞
⎠⎟
2
dx

0

L

∫  

 
Castigliano’s theorem 

θB = ∂U
∂Md Md=0

= 1
2EI

2 − w0x
3

6L
−Md

⎛
⎝⎜

⎞
⎠⎟
(−1)dx

0

L

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥Md=0

= 1
EI

w0x
3

6L
+Md

⎛
⎝⎜

⎞
⎠⎟
dx

0

L

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥Md=0

= 1
EI

w0x
4

24L
+Mdx

⎡
⎣⎢

⎤
⎦⎥x=0

x=L⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪Md=0

= 1
EI

w0L
3

24
+MdL

⎡
⎣⎢

⎤
⎦⎥Md=0

= w0L
3

24EI
CCW( )
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Example 16.7 
Determine the reaction at end B of the beam shown. 
 

 
Equilibrium – FBD of entire beam 

 
From here, we see that the problem is statically indeterminate: 3 unknowns ( By , Dy and 

MD ) and only two equations. Here, we will choose  
By  to be our redundant reaction: 

 
  

Fy∑ = By − w0L+ Dy = 0 ⇒ Dy = w0L− By   

 
  

M B∑ = − w0L( ) L
2

⎛
⎝⎜

⎞
⎠⎟
+ Dy L+ M D = 0 ⇒ M D = − w0L− By( )L+ 1

4
w0L2   

 
Determining internal bending moment 

 

 
ME∑ = M − Byx + w0x( ) x

2
⎛
⎝⎜

⎞
⎠⎟ = 0 ⇒ M (x) = −

w0x
2

2
+ Byx  

 
Strain energy in beam (ignoring contributions from shear stress/strain) 

 
U =

1
2

M 2

EI
dx

0

L

∫ =
1
2EI −

w0x
2

2
+ Byx

⎛
⎝⎜

⎞
⎠⎟
2

dx
0

L

∫  
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x
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Castigliano’s theorem 
With  

By  being our choice for the redundant reaction: 

 

0 = ∂U
∂By

= 1
2EI

2 − w0x
2

2
+ Byx

⎛
⎝⎜

⎞
⎠⎟
(x)dx

0

L

∫ = 1
EI − w0x

3

2
+ Byx

2⎛
⎝⎜

⎞
⎠⎟
dx

0

L

∫

= 1
EI − w0x

4

8
+
Byx

3

3

⎡

⎣
⎢

⎤

⎦
⎥
x=0

x=L

= 1
EI − w0L

4

8
+
ByL

3

3

⎡

⎣
⎢

⎤

⎦
⎥ ⇒ By =

3
8
w0L
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  w0

 A  B
  L1

 x

  y,v

  L2
 (2)

 (1)   E1I1

Example 16.8 
For the following examples, set up the problem for determining the requested deflections 
using Castigliano’s method:  

• draw appropriate FBDs;  
• determine internal results for each section;  
• set up the integrals for calculating the required deflections; 
• explain how Castigliano’s method is used to solve. Discuss the application of 

dummy forces (when needed) and how to handle redundant forces for 
indeterminate structures. 

 
Problem A 
Find the load carried by member (2) of the structure below. Let E  and  A  be the Young’s 
modulus and cross-sectional area, respectively, of member (2), whereas E and I are the 
Young’s modulus and second area moment of the cross section of (1), respectively. 
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Problem B 
Find the vertical deflection of the beam at point B and the angle of rotation of the beam at 
B. Let  E  and  I  be the Young’s modulus and second area moment of the beam cross 
section, respectively, of the beam. 

 
 
 
 
 
 
 
 
 
 
 
  

  w0

 A  C

 L

 x

  y,v

 a

 B
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Problem C 
Determine the reactions at rollers B and C on the beam below. Let  E  and  I  be the 
Young’s modulus and second area moment of the beam cross section, respectively, of the 
beam. 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

  w0

 A  C

  L / 2

 x

  y,v

 B

  L / 2
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Problem D 
Determine the vertical and horizontal deflection of the truss at joint D. All members of 
the truss have a cross-sectional area of A and are made of a material with a Young’s 
modulus of E. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

A
B

40 in

DC

(1)

(3)

(2)

(4)

30 in

30 in

P
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Example 16.9 
Determine the vertical component of deflection of node D on the truss. All members have 
the same cross-sectional area A and are made of the same material having a Young’s 
modulus of E. 
 

 
 
Equilibrium analysis of joint D 
 Fy∑ = −P − F2sinθ + F3 = 0 ⇒ F3 = P + F2sinθ   (1) 

 Fx∑ = −F1 − F2cosθ = 0 ⇒ F1 = −F2cosθ   (2) 
From this we see that the problem is INDETERMINATE (two equilibrium equations and 
three unknowns). We will consider the force   F2 to be the “redundant” force (this was an 
arbitrary choice). 
 
Strain energy in truss 

 

U =U1 +U2 +U2 =
1
2
F1
2L1
EA

+ 1
2
F2
2L2
EA

+ 1
2
F3
2L3
EA

; L2 =
L

cosθ
= 5L
4

= 1
2EA

F1
2L + F2

2 5L
4

⎛
⎝

⎞
⎠ + F3

2L⎡
⎣⎢

⎤
⎦⎥

= L
2EA

−F2cosθ( )2 + 5
4
F2
2 + P + F2sinθ( )2⎡

⎣⎢
⎤
⎦⎥
; using (1) and (2)

  

 
 
Castigliano’s theorem as applied to indeterminate structures 
Since we chose   F2  as our redundant force: 

L

B

C

θ
D

L

H

3

4

D

P

F1
(1)

(2)

(3)

P

θ

θ = tan−1(3 / 4) = 36.87°

F2

F3

x

y
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0 = ∂U
∂F2

= L
EA

F2cos
2θ + 5

4
F2 + P + F2sinθ( )sinθ⎡

⎣⎢
⎤
⎦⎥

⇒

0 = F2cos
2θ + 5

4
F2 + P + F2sinθ( )sinθ ⇒

cos2θ + 5
4
+ sin2θ⎛

⎝⎜
⎞
⎠⎟ F2 = −Psinθ ⇒ F2 = − 4

9
Psinθ

  

Therefore, the strain energy function becomes: 

 
U = L

2EA
− − 4

9
Psinθ⎛

⎝⎜
⎞
⎠⎟ cosθ

⎡
⎣⎢

⎤
⎦⎥
2
+ 5
4

− 4
9
Psinθ⎛

⎝⎜
⎞
⎠⎟
2
+ 5
9
Psinθ⎛

⎝⎜
⎞
⎠⎟
2⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= P
2Lsin2θ
162EA

5
9
+ 16
81
cos2θ⎛

⎝⎜
⎞
⎠⎟

  

Using Castigliano’s theorem gives: 

 
  
vD = ∂U

∂P
= PLsin2θ

81EA
5
9
+ 16

81
cos2θ⎛

⎝⎜
⎞
⎠⎟

  (since “+”, in same direction as P - DOWN) 
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Deflection analysis – Castigliano’s method 
The procedure for deflection analysis using Castigliano’s method: 

i) First determine if you need to include any “dummy” loads (recall that the 
Castigliano’s method can produce deflections/rotations at points on the structures 
at which applied forces/moments act and in directions in which these 
forces/moments act). Add in ALL of the needed dummy loads from the start; this 
can save you a lot of time down the road. 

ii) Draw a free body diagram (FBD) of the entire structure, and from this FBD write 
down the equilibrium equations; these equilibrium equations will be written in 
terms of the external reactions.  

• If DETERMINATE, solve these equations for the external reactions.  

• If INDETERMINATE, establish the “order” NR  of the indeterminancy (i.e., 
equal to the number of additional equations needed to solve for external 
reactions). From your external reactions, choose a set of n redundant 
reactions (  Ri ; i = 1,2,..., NR ). Write the remaining reactions in terms of 
these  NR  redundant reactions. 

iii) Divide beam into sections:   xi < x < xi+1 . This section division is dictated by: 
support reactions, beam geometry changes, and/or load changes (concentrated 
forces/moments, line load definition changes, etc.). 

iv) For each section, draw an FBD of either the left or right side of the body from a 
cut through that section of the beam. From this FBD, determine the distribution 
of bending moment   Mi(x) , shear force   Vi(x)  and axial force   FNi(x)  through 
that section of the structure. Using these, write down the strain energy in that 
section of the structure using: 

 

  

Ui =
1

2EI
Mi

2 dx
xi

xi+1

∫ +
fs

2GA
Vi

2 dx
xi

xi+1

∫ + 1
2EA

FNi
2 dx

xi

xi+1

∫   

From these strain energy terms, write down the total strain energy for the 
structure:   U =U1 +U2 +U3 + ... . It is recommended that you do NOT expand out 
the “squared” terms in these integrals at this point. 

v) If the problem is INDETERMINATE, first set up the additional algebraic 
equations for the reactions of the problems using Castigliano: 

 
  
0 = ∂U

∂Ri
; i = 1,2,..., NR   

Be sure to set any dummy loads to zero in the end. Solve these equations with 
the equilibrium equations from i) above.  

vi) Determine the desired deflections/rotations using Castigliano’s method: 

  δ i = ∂U / ∂Pi . Be sure to set any dummy loads to zero in the end.  
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Additional notes: 
 


