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10. Beams: Flexural and shear stresses 
 

 
Objectives: 
To develop relationships for the normal stresses and shear stresses corresponding to the 
internal bending moment and shear force resultants in beams. 
 
 
Background: 

• The bending moment M and shear force V at a cut through the cross section of a 
beam are couple and force resultants of the normal and shear stresses, 
respectively, at the cross section. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Shear force/bending moment equation: 
 

 

� 

V = dM
dx

 

 
• Axial stress/strain relation: 

 
 

� 

σ x = Eεx  
 

 
Lecture topics: 

a) Strains for pure bending in beams 
b) Flexural stresses due to bending in beams 
c) Stresses due general transverse force and bending-couple loading of beams 
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Lecture Notes 
Suppose we consider an example of a beam acted upon by two force/couple pairs 
resulting from equal magnitude forces P at locations A, B, C and D.  
 

 
 

As seen in the above shear-force/bending-moment diagrams: 
• The shear force in the beam between B and C is zero. 
• The bending moment between B and C is a constant value of  M = Pd .  

 
Therefore, a state of “pure bending” (zero shear force) exists between B and C in the 
beam. So long as we keep our focus on the section BC of the beam, we can represent the 
above loading as a beam with equal and opposite couples  M = Pd  applied at its ends, as 
shown below. 
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a)  Strains for pure bending in beams  
In order to view the beam deformations, it is convenient to imagine the beam to be made 
up of longitudinal fibers parallel to the longitudinal axis of the beam. Under the action of 
equal and opposite positive bending couples at its ends, the top fibers of the beam will 
shorten and the bottom fibers of the beam will stretch, as indicated below. The fiber that 
divides the region of compression from the region of stretch is said to lie on the “neutral 
surface” of the beam. 
 

 
 
Conversely, under the action of equal and opposite negative bending couples at its ends, 
the top fibers of the beam stretch and the bottom fibers will shorten. 
 

 
 
 
Euler- Bernoulli definitions and kinematic assumptions for thin beams 
Consider the following assumptions related to the geometry and loading of a beam: 

• The beam has a plane of longitudinal plane of symmetry (xy-plane as shown in 
following figure) called the “plane of bending”. Loading and supports for the 
beam are assumed to be symmetrical about the plane of bending. 

• The beam has a longitudinal plane (xz-plane as shown in following figure) 
perpendicular to the plane of bending on which there is zero longitudinal strain 
called the “neutral surface”. The intersection of the neutral surface with the plane 
of the cross section is called the “neutral axis” for the cross section. In the 
following discussions, it will be assumed that the z-axis will be aligned with the 
neutral axis of the beam in its undeformed state. The intersection of the plane of 
bending and neutral surface is known as the beam axis. The deformation of the 
initially-straight beam axis is known as the “deflection curve” of the beam. 
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• Planar cross sections that are perpendicular to the beam axis before the beam 
deforms remain perpendicular to the beam axis after deformation. In the following 
figure are shown two points A and B on a cut made perpendicular to the neutral 
axis of the undeformed beam. As a result of the application of the bending 
moment M, cut A-B rotates in the counter-clockwise sense to produce   A* − B* ; 
however, as a result of this assumption,   A* − B*  remains perpendicular to the 
deflection curve. Also, the radius of curvature of the deflection curve is denoted 
as ρ  in the figure. 
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b)  Flexural stresses due to bending in beams  
Consequences of the Euler-Bernoulli assumptions: 
• As a result of the above Euler-Bernoulli assumptions, it can be shown that the axial 

strain  εx across a perpendicular cut in the beam has the following distribution in  y : 

 
 
εx = −

y
ρ

 (1) 

where y is measured from the neutral surface of the beam and ρ  is the radius of 
curvature of the deflection curve for the loaded beam. 
 

• For a linearly-elastic material for the beam, the normal stress distribution in  y  is 
therefore: 

 
 
σ x = Eεx = −

Ey
ρ

 (2) 

 

 
 

• The resultant axial force on the face of the cut is found by: 
 
 

 
 
FN = σ x dA

A
∫ = −

E
ρ

y dA
A
∫ = −

E y A
ρ

 

where  A  is the area of the cross section at the cut and  y  is y-position of the 
centroid of the cut. Since the beam is known to be in pure bending, the resultant 
axial force on the face of the cut must be zero. Therefore, using the above, we see 
that: 
   y = 0  (3) 
or, in words, the neutral axis must past through the centroid of the cross section of 
the cut.   
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RESULT: When studying the stress distribution in beams, determine first the 
location of the centroid of the cross section – the neutral axis passes through this 
point. 
 
 

• The resultant moment about the neutral axis must be equal to the couple  M . 
Therefore, 

 
  
M = − σ x y dA

A
∫ =

E
ρ

y2 dA
A
∫ =

EI
ρ

 (4) 

where: 
 

  
I = y2 dA

A
∫ = second area moment of cross section  (5) 

• Combining equations (2) and (4) gives the desired relationship between the applied 
couple M and the distribution of normal stress across a cross section of the beam: 

 
 
σ x = −

M y
I

 (6) 
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Summary: pure bending at a beam cross section 
At a cut through a section of a beam experiencing pure bending (zero shear force,   V = 0 ) 
and abiding by the Euler-Bernoulli assumptions, we can make the following observations 
(see following figure): 

a) Even though loads are applied transverse to the beam, axial strains and stresses are 
produced. Only normal stresses  σ x  exist at the cut. 

b) The extensional strain   ε x = − y / ρ  is inversely proportional to the radius of 
curvature of the beam deflection curve at a cross section, x.  

c) The signs of ρ  and y govern the sign of  ε x . If ρ is positive, the center of curvature 
of the beam deflection lies above the beam, that is, on the +y side of the beam and 
the deformed beam is concave upward. Because of the negative sign in the equation 
of  ε x , the sections above the neutral surface are in compression, while the sections 
below the neutral surface are in tension.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

d) The axial strain is not uniform across the section but varies according the height of 
the point from the neutral axis. Flexural strain reaches maximum at the top and 
bottom of the beam and is zero at the neutral axis where there is no axial strain. 

e) The neutral axis of the cross section (axis of zero strain) passes through the centroid 
of the cross section. 

f) The normal stresses vary linearly in the y-direction:   σ x ( y) = −My / I , where  I  is 
the second area moment of the cross section at the cut about the neutral axis. The 
negative sign in this equation results from sign conventions established earlier. For 
example, a positive bending moment results in negative (compressive) stress above 
the neutral axis and positive (tensile) stress below the neutral axis. 

g) The normal stresses are constant in the z-direction (into the depth of the beam). 
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h) The normal stress is zero at the neutral axis.  
i) The maximum (magnitude) normal stress exists at the most outer surface of the 

beam (as measured from the neutral axis). In particular, 

 
 
σ x max

=
M y

max
I

 

where 
  
y

max
= max hT ,hB( ) . 

j) The bending moment M can be written in terms of the radius of curvature ρ  of the 
beam deflection as:   M = EI / ρ . Since M is a constant over the section of pure 
bending, the radius of curvature is also a constant. Hence, we conclude that a 
section of pure bending of a beam takes on the shape of a circle (circle = curve of 
constant radius of curvature). 
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Example 10.1 
 
A simply-supported beam is loaded as shown. The cross section at location C of the beam 
is as shown below right, where C is somewhere between the two applied loads P. Point O 
on the cross section is on the neutral axis of the beam. 

a) Determine the second area of moment of the beam cross section. Leave your 
answer in terms of b and h. 

b) Determine the distribution of normal stress on the cross section of the beam as a 
function of y. 

c) Determine the maximum (magnitude) of the normal stress on the cross section. 
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Example 10.2 
 
A beam is loaded in pure bending, as shown. The cross section at location C of the beam 
is as shown below right, where C is somewhere along the length of the beam. Point O on 
the cross section is on the neutral axis of the beam. 

a) Determine the second area of moment of the beam cross section. Leave your 
answer in terms of R. 

b) Determine the distribution of normal stress on the cross section of the beam as a 
function of y. 

c) Determine the maximum (magnitude) of the normal stress on the cross section. 
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Example 10.4 
 
A circular cross-sectioned, straight rod having a diameter of  d , a length of  L  and of a 
material with a Young’s  modulus of  E  is stored by coiling the rod inside of drum with 
an inside diameter of  D . Assuming that the yield strength of rod material is not 
exceeded, determine the maximum stress in the coiled rod, and the maximum bending 
moment in the rod. 
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Second area moment of a cross section 
Consider the beam cross section shown below left that is symmetrical about the y-axis 
but with no symmetry assumptions about the x-axis, where the origin of the x-y axis, O, 
is placed at the centroid of the cross section. 
 

 
 
In the preceding derivation of the stress distribution across a cross section: 

 
 
σ x = −

M y
IO

 (6) 

we saw that this relationship depends on the “second area moment”  IO  for the cross 
section: 
 

  
IO = y2 dA

A
∫  

where y is measured from the centroid of the cross section. Note that this parameter 
depends solely on the shape of the cross section and does not depend on either the 
material properties of the beam or the strain in the beam. 
 
Tabulated expressions for the centroidal second area moments for a number of common 
beam cross sections are provided on the following pages. 
 
For reasons that we will discuss later on, we often times need to know the second area 
moment about points on the plane of symmetry but not at the centroid of the cross 
section. Consider point B shown in the figure above right that is located at a distance 

 dOA  from the centroid O on the plane of symmetry. Suppose we place a set of X-Y 

coordinate axes with its origin at A such that X = x  and  Y = y − dOB . Therefore, the 
second area moment about point B is found from: 
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IB = Y 2 dA
A
∫ = y − dOB( )2 dA

A
∫

= y2 − 2dOB y + dOB
2( )dA

A
∫

= y2 dA
A
∫ − 2dOB y dA

A
∫ + dOB

2 dA
A
∫

= IO − 2dOB yA+ AdOB
2

 

 
where  A  is the area of the cross section and  y  is the y-position of the centroid of the 
area. Since the origin O for the x-y axes is located at the centroid of the cross section, we 
have   y = 0 . Therefore, 

   IB = IO + AdOB
2  (7) 

Equation (7) is the “parallel axis theorem” for second areas of moments. In words, in 
order to determine the second area moment about an arbitrary point B on the plane of 
symmetry, simply add   AdOB

2  to the centroidal second area moment  IO , where  dOB  is the 
distance between O and B. 
 
In general, one needs to perform an integration over the cross section of the beam in 
order to evaluate this integral representation for  IO . We have seen this process in the 
earlier examples. However, for certain cross sections, we can use results from simple 
shapes to construct the overall second area moment for the cross section. To this end, we 
will need to use the above parallel axis theorem. This process is demonstrated in the 
following examples. 
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Example 10.5 
 
The cantilevered beam shown below is loaded in pure bending. The beam has a cross 
section at location C on the beam as shown below right. The origin O is located on the 
neutral axis of the beam. 

a) Determine the second area moment  IOz  corresponding to the neutral axis of the 
beam. 

b) Determine the distribution of normal stress on the cross section of the beam as a 
function of y. 

c) Determine the maximum (magnitude) normal stress occurring on the cross-
sectional face at C. 
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Example 10.6 
 
The beam shown below is loaded in pure bending. The beam has a cross section at 
location C on the beam as shown below right. The origin O is located on the neutral axis 
of the beam. 

a) Determine the location of the centroid for the cross of this beam; i.e., what is the 
distance d? 

b) Determine the second area moment  IOz  corresponding to the neutral axis of the 
beam. 

c) Determine the distribution of normal stress on the cross section of the beam as a 
function of y. 

d) Determine the maximum (magnitude) normal stress occurring on the cross-
sectional face at C. 

 

 
 
 
 

  

 t

 t

 z

 y

 t

 a  a

 b  b

 h
 O

 d

 cross section at C

 t

 z

 y

 t

 b  b

 h O

 cross section at C
 t

 A  B

 y

 x

 C

 M  M

 A  B

 y

 x

 C

 M

t 20 mm b 80mm a 40mm h 80 MM

dI
it

Eth I hi.at IEIAtis a ooo m

Az 3200 mm
hi 40mm

I 65 mm
ha L Go mm

d 100 65 35 mm

hz ht 90mm



d 25mm

dz 25 MM
iii

Io I t A dit Iz Aad

Iz As di

Tx

x

Emm
I Jmax



 

Beams: Flexural and shear stresses Topic 10: 16 Mechanics of Materials 
 
 

c)  Stresses due general transverse force and bending-couple loading of beams 
Earlier in the chapter, we considered the normal stress distribution within the cross 
section of a beam experiencing pure bending (i.e., in the absence of a shear force 
resultant on the cross-sectional cut). Here we will now consider the more general case of 
having both shear force and bending moment couples on the cross-sectional cut, as 
demonstrated by the figure below. 
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We have seen that the normal stresses due to the bending moment  M  are linearly 
distributed over the cross section, with maximum magnitudes of normal stress occuring 
on the outer fibers of the beam and with zero normal stress at the neutral axis (the neutral 
axis passing through the centroid of the cross section). 
 
With the shear force  V  now added to the cross-sectional cut, we now need to determine 
the shear stress distribution on the cross section. With our earlier assumptions of 
symmetry of the beam cross section about the xy-plane, we know that the distribution of 
the shear force will be constant through the depth of the beam (z-direction). For the case 
of direct shear (zero bending moment), the shear stress was also constant in the y-
direction, making shear force constant throughout the cross section a constant. However, 
the presence of the bending moment induces a redistribution of shear stresses in the y-
direction.  
 

 
 
Consider the cross section shown above. We desire to know the shear stress τ  acting on 
a stress element at a distance of y from the neutral surface. This shear stress along the 
axis of symmetry (the y-axis) can be expressed as: 

 
 
τ = VQ

It
 (8) 

where: 
  V = shear force at cross section 

   Q = A*y*   

   A*  = cross-sectional area above the element 

   y
*  = centroid of the area above the element 

  I  = centroidal second area moment for the entire cross section 
  t  = depth dimension of the beam at the location of the stress element of interest 
 
The derivation of equation (8) will be presented on the following pages.  
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Derivation of the shear stress distribution equation 
 
Background: 

a) Recall that in the derivation of the equation for the normal stress distribution for 
pure bending: 

  (6) 

we assumed that plane sections of the cross section remain plane, and that they 
remain perpendicular to the deformed axis of the beam. For the more general 
situation in which a shear force V acts along with the bending moment M, a 
component of shear stress will exist. As we have seen earlier, the resulting shear 
strains correspond to a change in angle of the stress element. This angle change is 
somewhat in contradiction with the pure bending assumption of the cross section 
remaining perpendicular to the deformed beam axis. For our derivation, we will 
assume that the shear strain effects will be slight and that, even in the presence of 
shear stress, the distribution of flexural stress on a given cross section is 
unaffected by the deformation due to shear and that equation (6) is still valid for 
computing the normal stresses on the cross section. 

b) Suppose we consider a stress element on the side of a beam with a non-zero shear 
force resultant on the face of the cut. Our goal here is to determine the transverse 
shear stress component 

 
τ xy  that corresponds to the shear force resultant V. Note, 

however, that since 
 
τ yx = τ xy , the transverse shear stress component 

 
τ xy  is the 

same as the longitudinal shear stress component 
 
τ yx . Stated in different words, 

we can determine the transverse shear stress by calculating the longitudinal shear 
stress. This will be the process that we will use here in deriving equation (8). 
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Derivation of shear stress equation: 

 
Consider the aribitrarily-loaded beam shown above. Here we isolate a section of the beam 
between locations  x  and  x + Δx , with the resultant shear forces and bending moments 
acting on this section, as shown above left. The resultant bending moments   M (x)  and 

  M (x + Δx)  produce normal stresses of   σ (x) and   σ (x + Δx) on the left and right faces of 
the beam section, respectively. Suppose we further isolate a slice of this beam section 
found above a given value of y on the beam cross section. As shown in the above figure, 
the resultants of the normal components of stress on the left and right faces are given by 
  F(x) and   F(x + Δx) , respectively. A resultant longitudinal shear force  ΔH also acts on 
the lower surface of the slice at y. From static equilibrium of the slice we have: 
   Fx∑ = F(x)− F(x + Δx)+ ΔH = 0 ⇒ ΔH = F(x + Δx)− F(x)   
The shear stress corresponding to this resultant shear force is found from the usual 
definition of stress in terms of the force resultant as: 

 
  
τ = lim

Δx→0

ΔH
tΔx

⎛
⎝⎜

⎞
⎠⎟
= 1

t
lim
Δx→0

F(x + Δx)− F(x)
Δx

⎛
⎝⎜

⎞
⎠⎟
= 1

t
dF
dx

  (9) 

From the above we have: 
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where   A* and   y
* are the area and the centroid of the area of the cross section above y. 

Combining equations (9) and (10) gives: 

 
  
τ = A*y*

It
dM
dx

  (11) 

Finally, recall that from equilibrium analysis that   V = dM / dx . Therefore, (11) becomes: 

 
  
τ = VA*y*

It
  (8) 

 
Comments on the usage of the shear stress equation 

a) Note that this derivation was based on considering a slice of the beam section 
ABOVE the location y; hence, we ended up with   A

*y* representing the area 
above y. Alternately, we could have easily kept a slice of the section BELOW 
position y. In that case   A

*y* in the equation would then represent that area below 
y. We will get the same magnitude for the shear stress using the area below y as if 
we consider the area above y. 

b) There are limitations on the usage of this shear stress equation, as listed below. 

• Effect of load distribution: The assumptions of plane sections remaining 
plane and perpedicular to the neutral surface are valid for beams that are long 
compared to their depth. This assumption limits the influence of shear 
deformations in the beam and, hence, limits the error in the flexural stresses. 

• Effect of cross section shape: The shear stress equation derived is particularly 
accurate for beams that are thin in the depth dimension (“t”) and for which 
this dimension t does not vary rapidly with y. For thin-walled beams, the 
shear stress equation is valid for sections of the cross section that are aligned 
with the y-axis, and most accurately so near the neutral plane.  

c) Other remarks on the shear stress equation: 

• The sign of τ  is the same as the sign on V. Also, recall that V is the force 
resultant of the shear stress:   

V = τ dA∫   

•  I   is the second area moment of the cross-section 
(independent of the location y). 

•  t  is the net thickness of the beam at the location y. 

• Regardless of the cross section,  τ = 0  at the top 
and bottom fibers of the beam. 

• If the beam cross section is symmetric about the neutral axis, the 
maximum shear stress occurs at the neutral axis. 
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Example – shear stress distribution in a rectangular cross section 
As an example, consider a rectangular cross section beam of dimensions of thickness h 
and depth t. From before, we know that the centroidal second 
area moment for a rectangular beam of these dimensions is 

  I = th3 / 12 . For a stress element at y, we have: 
 

 
  
A* =

h
2
− y

⎛
⎝⎜

⎞
⎠⎟

t   

 
  
y* =

1
2

h
2
+ y

⎛
⎝⎜

⎞
⎠⎟

 

Combining the above gives: 

 

  

τ =
V (h / 2 − y)t⎡⎣ ⎤⎦ (h / 2 + y) / 2⎡⎣ ⎤⎦

th3 / 12( )t
=

6
h3t

h2

4
− y2

⎛

⎝
⎜

⎞

⎠
⎟V =

6
Ah2

h2

4
− y2

⎛

⎝
⎜

⎞

⎠
⎟V

 

From this result, we observe the following for the shear stress distribution across a cut of 
a rectangular cross section beam experiences a shear force V: 

• The stress distribution is quadratic with location y of the stress element. 
• The shear stress is zero at the outer fibers of the beam (  y = ±h / 2 ), as expected 

since these fibers experience no horizontal loads. 
• The shear stress is a maximum at the neutral axis (  y = 0 ). This maximum shear 

stress is given by: 

 
  
τmax =

3V
2A

 

• Recall that the average shear stress across the cut is given by   τ ave =V / A , which 
would be the shear stress on the cut in the absence of a bending moment. From 
this we see that the bending moment produces a 50% increase in the maximum 
shear stress for a rectangular cross sectioned beam. 
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Summary: stress distribution due to combined shear force and bending couple at cut 
At a cut through a section of a beam experiencing both a shear force  V  and bending 
moment  M , and abiding by the Euler-Bernoulli assumptions, we can make the following 
observations (see following figure): 

a) Both normal stresses  σ x  and shear stresses τ  exist at the cut. 

b) The normal stresses vary linearly in the y-direction as in the pure bending case. 
All previous observations about the normal stresses due to pure bending also 
apply in the case. 

c) The shear stresses are approximately constant in the z-direction (into the depth of 
the beam) for “narrow beams”,   t > 2h . 

d) The shear stress is zero at the outer surfaces of the beam.  

e) For rectangular cross-section beams, the shear stress distribution at a cut is 
parabolic in the y-direction: 

 
  
τ =

6
Ah2

h2

4
− y2

⎛

⎝
⎜

⎞

⎠
⎟V  

where A is the area of the cross section. The maximum shear stress, 

  τmax = 3V / 2A , occurs at the neutral axis (  y = 0 ). 
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Shown below is a rectangular cross section cantilevered beam with a single transverse 
applied load P. A cut is made at one location along the beam. What are the stress states at 
stress elements a, b, c, d and e at the cut? 
 
The cut in the beam exposes both a bending moment M and a shear force V, where: 
   M (x) = P(L − x)  

  V = −P = constant along length of beam  

where x is the location of the beam cut. A combination of normal stress σ  and shear 
stress τ  is expected, in general, at the stress elements. Based on our earlier analysis, we 
observe: 

• Stress elements a and e experience only normal stress since shear stress is zero at 
the outer fibers. At a the normal stress is compressive, and at e the normal stress is 
tensile. The magnitudes of these normal stresses are equal and are their maximum 
values on the cross section. 

• Stress element c experiences only shear stress since the normal stress is zero at the 
neutral axis. The shear stress τ  at c is the maximum of all stress elements on the 
cut. 

• Stress elements b and d experience a combination of normal and shear stress. The 
normal stress at b is compressive, and the normal stress at d is tensile. 

 
Note that the maximum shear stress at a cut is constant along the length of the beam. The 
magnitude of the maximum normal stress at a cut decreases as the cut is moved away 
from the wall. 
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Example 10.7 
A rectangular cross-section timber beam AE has dimensions and loading shown. 
Determine the normal and shear stress distributions at location C on the beam. 
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Example 10.10 
 
A timber plank is to be used as a diving board. The diving board is held down at end A 
by a steel strap that is secured by anchor bolts and rests on a roller at location B. 
Calculate the maximum permissible load  Pmax  such that the maximum normal stress in 
the diving board does not exceed   11 MPa . 
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Example 10.11 
 
Use the shear stress formula for a general shape cross section developed earlier in the 
chapter to determine an expression for the maximum shear stress along the symmetry 
axis y of the circular cross section beam shown below. 
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Example 10.13 
 
A linearly-varying distributed load acts between B and C on the simply-supported beam 
shown below. The beam has a square cross section. It is known that the magnitude of 
allowable normal stress in the beam is 10allow ksiσ = . Determine the minimum value for 
b such that the beam does not fail under this loading. Where is the critical stress location 
for this loading? 
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Additional notes: 
 
 
  


