Quiz 5 solutions

The number of redundant reactions for this problem is:

$$
\begin{aligned}
& \left.\begin{array}{l}
\sum F_{x}=0 \\
\sum F_{y}=0 \\
\sum M_{x}=0
\end{array}\right\} \begin{array}{l}
3 \text { agn } \\
3 \text { untanown }
\end{array} \\
& \Rightarrow \text { ze0 nedundatt } \\
& \text { O none of the above } \\
& \text { coad }
\end{aligned}
$$

$\circ 1$
02
03
04
05
06
0 onecrineabere

$$
\begin{aligned}
& \left.\sum F_{y}=0\right\} \text { zeqnal } \\
& \left.\sum M_{k}=0\right\} 3 \text { untenowis } \\
& \Longrightarrow 1 \text { redurdant } \\
& \text { load }
\end{aligned}
$$

$$
\left.\begin{array}{l}
\sum F_{y}=0 \tag{00}\\
\sum M_{A}=0
\end{array}\right\} 2 \text { eqns/ } \begin{aligned}
& 3 \text { cnknouns } \\
& \Rightarrow 1 \text { redundart load }
\end{aligned}
$$

05

O none of the above

Q4.1
The number of redundant reactions for this problem is:

$$
\left.\begin{array}{l}
\sum F_{y}=0 \\
\sum M_{A}=0
\end{array}\right\} \begin{aligned}
& 2 \text { agns/ } \\
& 4 \text { unknouns } \\
& \Rightarrow 2 \text { redundart loads }
\end{aligned}
$$

Q4.2

2 Points
Castigllano's Theorem is to be used to determine the transverse displacement of the beam at point B

TRUE or FALSE: A dummy load is needed in this case.

- TRUE

Need a dummy load at B to find deflection at B

The number of redundant reactions tor this problem is: Ay By Cy
\(\left.\begin{array}{ll} \& \left.\sum \Sigma y=0\right\} 2 gnns/

\sum M_{n}=0\end{array}\right\}\)| quntinainy |
| :--- |

2Ponts

The number ot redundant reactions tor this problem is:
$2 F=0$

$\sum F=1$ redundanf load

$$
\left.\begin{array}{l}
\sum F_{x}=0 \\
\sum F_{y}=0
\end{array}\right\} \begin{aligned}
& 2 \text { eqns/ } \\
& 3 \text { unknouns } \\
& \Rightarrow 1 \text { redundant load }
\end{aligned}
$$

2 Points
When using Castigllano's Theorem for indeterminate structures, the final form of the strain energy:

O should include all reaction loads.
© should include only redundant reaction loads.
O should include all but the redundant reaction loads
O the number of reaction loads to include is totally up to you.
O none ot the above

Q9
2 Points

A three-node finite element model is to be constructed for the rod shown here. The size of the stiffness matrix [K] that is to be used to solve for the nodal displacements is of the size:Ix0202$3 \times 3$$4 \times 4$
O none of the above

Q10
2 Points

A three-node finite element model is to be constructed for the rod shown here. The size of the stiffness matrix [K] that is to be used to solve for the nodal displacements is of the size:xt$2 \times 2$$3 \times 3$$4 \times 4$none ot the above

$$
[k]=\left[\begin{array}{ccc}
k_{1} & b_{1} & \\
-k_{1} k_{1}+k_{2} & -k_{2} \\
& -k_{2} & k_{2}
\end{array}\right]
$$

